Search Results

Documents authored by Andrews, Robert


Document
Algebraic Pseudorandomness in VNC⁰

Authors: Robert Andrews

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We study the arithmetic complexity of hitting set generators, which are pseudorandom objects used for derandomization of the polynomial identity testing problem. We give new explicit constructions of hitting set generators whose outputs are computable in VNC⁰, i.e., can be computed by arithmetic formulas of constant size. Unconditionally, we construct a VNC⁰-computable generator that hits arithmetic circuits of constant depth and polynomial size. We also give conditional constructions, under strong but plausible hardness assumptions, of VNC⁰-computable generators that hit arithmetic formulas and arithmetic branching programs of polynomial size, respectively. As a corollary of our constructions, we derive lower bounds for subsystems of the Geometric Ideal Proof System of Grochow and Pitassi. Constructions of such generators are implicit in prior work of Kayal on lower bounds for the degree of annihilating polynomials. Our main contribution is a construction whose correctness relies on circuit complexity lower bounds rather than degree lower bounds.

Cite as

Robert Andrews. Algebraic Pseudorandomness in VNC⁰. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{andrews:LIPIcs.CCC.2025.15,
  author =	{Andrews, Robert},
  title =	{{Algebraic Pseudorandomness in VNC⁰}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.15},
  URN =		{urn:nbn:de:0030-drops-237092},
  doi =		{10.4230/LIPIcs.CCC.2025.15},
  annote =	{Keywords: Polynomial identity testing, Algebraic circuits, Ideal Proof System}
}
Document
Algebraic Hardness Versus Randomness in Low Characteristic

Authors: Robert Andrews

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show that lower bounds for explicit constant-variate polynomials over fields of characteristic p > 0 are sufficient to derandomize polynomial identity testing over fields of characteristic p. In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires either the characteristic to be sufficiently large or the notion of hardness to be stronger than the standard syntactic notion of hardness used in algebraic complexity. Our results make no restriction on the characteristic of the field and use standard notions of hardness. We do this by combining the Kabanets-Impagliazzo generator with a white-box procedure to take p-th roots of circuits computing a p-th power over fields of characteristic p. When the number of variables appearing in the circuit is bounded by some constant, this procedure turns out to be efficient, which allows us to bypass difficulties related to factoring circuits in characteristic p. We also combine the Kabanets-Impagliazzo generator with recent "bootstrapping" results in polynomial identity testing to show that a sufficiently-hard family of explicit constant-variate polynomials yields a near-complete derandomization of polynomial identity testing. This result holds over fields of both zero and positive characteristic and complements a recent work of Guo, Kumar, Saptharishi, and Solomon, who obtained a slightly stronger statement over fields of characteristic zero.

Cite as

Robert Andrews. Algebraic Hardness Versus Randomness in Low Characteristic. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 37:1-37:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{andrews:LIPIcs.CCC.2020.37,
  author =	{Andrews, Robert},
  title =	{{Algebraic Hardness Versus Randomness in Low Characteristic}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{37:1--37:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.37},
  URN =		{urn:nbn:de:0030-drops-125895},
  doi =		{10.4230/LIPIcs.CCC.2020.37},
  annote =	{Keywords: Polynomial identity testing, hardness versus randomness, low characteristic}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail