Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz. Dimensionality Reduction for k-Distance Applied to Persistent Homology. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{arya_et_al:LIPIcs.SoCG.2020.10, author = {Arya, Shreya and Boissonnat, Jean-Daniel and Dutta, Kunal and Lotz, Martin}, title = {{Dimensionality Reduction for k-Distance Applied to Persistent Homology}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {10:1--10:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.10}, URN = {urn:nbn:de:0030-drops-121682}, doi = {10.4230/LIPIcs.SoCG.2020.10}, annote = {Keywords: Dimensionality reduction, Johnson-Lindenstrauss lemma, Topological Data Analysis, Persistent Homology, k-distance, distance to measure} }
Feedback for Dagstuhl Publishing