Search Results

Documents authored by Bannink, Tom


Document
Quasirandom Quantum Channels

Authors: Tom Bannink, Jop Briët, Farrokh Labib, and Hans Maassen

Published in: LIPIcs, Volume 158, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)


Abstract
Mixing (or quasirandom) properties of the natural transition matrix associated to a graph can be quantified by its distance to the complete graph. Different mixing properties correspond to different norms to measure this distance. For dense graphs, two such properties known as spectral expansion and uniformity were shown to be equivalent in seminal 1989 work of Chung, Graham and Wilson. Recently, Conlon and Zhao extended this equivalence to the case of sparse vertex transitive graphs using the famous Grothendieck inequality. Here we generalize these results to the non-commutative, or "quantum", case, where a transition matrix becomes a quantum channel. In particular, we show that for irreducibly covariant quantum channels, expansion is equivalent to a natural analog of uniformity for graphs, generalizing the result of Conlon and Zhao. Moreover, we show that in these results, the non-commutative and commutative (resp.) Grothendieck inequalities yield the best-possible constants.

Cite as

Tom Bannink, Jop Briët, Farrokh Labib, and Hans Maassen. Quasirandom Quantum Channels. In 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 158, pp. 5:1-5:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bannink_et_al:LIPIcs.TQC.2020.5,
  author =	{Bannink, Tom and Bri\"{e}t, Jop and Labib, Farrokh and Maassen, Hans},
  title =	{{Quasirandom Quantum Channels}},
  booktitle =	{15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-146-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{158},
  editor =	{Flammia, Steven T.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2020.5},
  URN =		{urn:nbn:de:0030-drops-120642},
  doi =		{10.4230/LIPIcs.TQC.2020.5},
  annote =	{Keywords: Quantum channels, quantum expanders, quasirandomness}
}
Document
Bounding Quantum-Classical Separations for Classes of Nonlocal Games

Authors: Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1/m + (m-1)/m t^{1-t}. Secondly, for free XOR games, in which the input distribution is of product form, we show beta(G) >= beta^*(G)^{2^t} where beta(G) and beta^*(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1-epsilon then the classical value is at least 1-O(sqrt{epsilon log k}) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms.

Cite as

Tom Bannink, Jop Briët, Harry Buhrman, Farrokh Labib, and Troy Lee. Bounding Quantum-Classical Separations for Classes of Nonlocal Games. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 12:1-12:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bannink_et_al:LIPIcs.STACS.2019.12,
  author =	{Bannink, Tom and Bri\"{e}t, Jop and Buhrman, Harry and Labib, Farrokh and Lee, Troy},
  title =	{{Bounding Quantum-Classical Separations for Classes of Nonlocal Games}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{12:1--12:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.12},
  URN =		{urn:nbn:de:0030-drops-102512},
  doi =		{10.4230/LIPIcs.STACS.2019.12},
  annote =	{Keywords: Nonlocal games, communication complexity, bounded separations, semidefinite programming, pseudorandomness, Gowers norms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail