Search Results

Documents authored by Barbosa, Rui Soares


Document
The Logic of Contextuality

Authors: Samson Abramsky and Rui Soares Barbosa

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Contextuality is a key signature of quantum non-classicality, which has been shown to play a central role in enabling quantum advantage for a wide range of information-processing and computational tasks. We study the logic of contextuality from a structural point of view, in the setting of partial Boolean algebras introduced by Kochen and Specker in their seminal work. These contrast with traditional quantum logic à la Birkhoff and von Neumann in that operations such as conjunction and disjunction are partial, only being defined in the domain where they are physically meaningful. We study how this setting relates to current work on contextuality such as the sheaf-theoretic and graph-theoretic approaches. We introduce a general free construction extending the commeasurability relation on a partial Boolean algebra, i.e. the domain of definition of the binary logical operations. This construction has a surprisingly broad range of uses. We apply it in the study of a number of issues, including: - establishing the connection between the abstract measurement scenarios studied in the contextuality literature and the setting of partial Boolean algebras; - formulating various contextuality properties in this setting, including probabilistic contextuality as well as the strong, state-independent notion of contextuality given by Kochen-Specker paradoxes, which are logically contradictory statements validated by partial Boolean algebras, specifically those arising from quantum mechanics; - investigating a Logical Exclusivity Principle, and its relation to the Probabilistic Exclusivity Principle widely studied in recent work on contextuality as a step towards closing in on the set of quantum-realisable correlations; - developing some work towards a logical presentation of the Hilbert space tensor product, using logical exclusivity to capture some of its salient quantum features.

Cite as

Samson Abramsky and Rui Soares Barbosa. The Logic of Contextuality. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 5:1-5:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.CSL.2021.5,
  author =	{Abramsky, Samson and Barbosa, Rui Soares},
  title =	{{The Logic of Contextuality}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.5},
  URN =		{urn:nbn:de:0030-drops-134394},
  doi =		{10.4230/LIPIcs.CSL.2021.5},
  annote =	{Keywords: partial Boolean algebras, contextuality, exclusivity principles, Kochen-Specker paradoxes, tensor product}
}
Document
Minimum Quantum Resources for Strong Non-Locality

Authors: Samson Abramsky, Rui Soares Barbosa, Giovanni Carù, Nadish de Silva, Kohei Kishida, and Shane Mansfield

Published in: LIPIcs, Volume 73, 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)


Abstract
We analyse the minimum quantum resources needed to realise strong non-locality, as exemplified e.g. by the classical GHZ construction. It was already known that no two-qubit system, with any finite number of local measurements, can realise strong non-locality. For three-qubit systems, we show that strong non-locality can only be realised in the GHZ SLOCC class, and with equatorial measurements. However, we show that in this class there is an infinite family of states which are pairwise non LU-equivalent that realise strong non-locality with finitely many measurements. These states have decreasing entanglement between one qubit and the other two, necessitating an increasing number of local measurements on the latter.

Cite as

Samson Abramsky, Rui Soares Barbosa, Giovanni Carù, Nadish de Silva, Kohei Kishida, and Shane Mansfield. Minimum Quantum Resources for Strong Non-Locality. In 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 73, pp. 9:1-9:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.TQC.2017.9,
  author =	{Abramsky, Samson and Barbosa, Rui Soares and Car\`{u}, Giovanni and de Silva, Nadish and Kishida, Kohei and Mansfield, Shane},
  title =	{{Minimum Quantum Resources for Strong Non-Locality}},
  booktitle =	{12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017)},
  pages =	{9:1--9:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-034-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{73},
  editor =	{Wilde, Mark M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2017.9},
  URN =		{urn:nbn:de:0030-drops-85822},
  doi =		{10.4230/LIPIcs.TQC.2017.9},
  annote =	{Keywords: strong non-locality, maximal non-locality, quantum resources, three-qubit states}
}
Document
The Quantum Monad on Relational Structures

Authors: Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Homomorphisms between relational structures play a central role in finite model theory, constraint satisfaction, and database theory. A central theme in quantum computation is to show how quantum resources can be used to gain advantage in information processing tasks. In particular, non-local games have been used to exhibit quantum advantage in boolean constraint satisfaction, and to obtain quantum versions of graph invariants such as the chromatic number. We show how quantum strategies for homomorphism games between relational structures can be viewed as Kleisli morphisms for a quantum monad on the (classical) category of relational structures and homomorphisms. We use these results to exhibit a wide range of examples of contextuality-powered quantum advantage, and to unify several apparently diverse strands of previous work.

Cite as

Samson Abramsky, Rui Soares Barbosa, Nadish de Silva, and Octavio Zapata. The Quantum Monad on Relational Structures. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 35:1-35:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{abramsky_et_al:LIPIcs.MFCS.2017.35,
  author =	{Abramsky, Samson and Barbosa, Rui Soares and de Silva, Nadish and Zapata, Octavio},
  title =	{{The Quantum Monad on Relational Structures}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.35},
  URN =		{urn:nbn:de:0030-drops-81290},
  doi =		{10.4230/LIPIcs.MFCS.2017.35},
  annote =	{Keywords: non-local games, quantum computation, monads}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail