Search Results

Documents authored by Bhyravarapu, Sriram


Document
Kernelization in Almost Linear Time for Clustering into Bounded Vertex Cover Components

Authors: Sriram Bhyravarapu, Pritesh Kumar, Madhumita Kundu, Shivesh K. Roy, Sahiba, and Saket Saurabh

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Motivated by the growing interest in graph clustering and the framework proposed during the Dagstuhl Seminar 23331, we consider a natural specialization of this general approach (as also suggested during the seminar). The seminar introduced a broad perspective on clustering, where the goal is to partition a graph into connected components (or "clusters") that satisfy simple structural integrity constraints - not necessarily limited to cliques. In our work, we focus on the case where each cluster is required to have bounded vertex cover number. Specifically, a connected component C satisfies this condition if there exists a set S ⊆ V(C) with |S| ≤ d such that C - S is an independent set. We study this within the framework of the {Vertex Deletion to d-Vertex Cover Components} ({Vertex Deletion to d-VCC}) problem: given a graph G and an integer k, the task is to determine whether there exists a vertex set S ⊆ V(G) of size at most k such that every connected component of G - S has vertex cover number at most d. We also examine the edge-deletion variant, {Edge Deletion to d-Vertex Cover Components} ({Edge Deletion to d-VCC}), where the goal is to delete at most k edges so that each connected component of the resulting graph has vertex cover number at most d. We obtain following results. 1) {Vertex Deletion to d-VCC} admits a kernel with {𝒪}(d⁶k³) vertices and {𝒪}(d⁹k⁴) edges. 2) {Edge Deletion to d-VCC}, admits a kernel with {𝒪}(d⁴k) vertices and {𝒪}(d⁵k) edges. Both of our kernelization algorithms run in time 𝒪(1.253^d ⋅ (kd)^{𝒪(1)} ⋅ n log n). It is important to note that, unless the Exponential Time Hypothesis (ETH) fails, the dependence on d cannot be improved to 2^{o(d)}, as the case k = 0 reduces to solving the classical Vertex Cover problem, which is known to require 2^{Ω(d)} time under ETH. A key ingredient in our kernelization algorithms is a structural result about the hereditary graph class 𝒢_d, consisting of graphs in which every connected component has vertex cover number at most d. We show that 𝒢_d admits a finite obstruction set (with respect to the induced subgraph relation) of size 2^{𝒪(d²)}, where each obstruction graph has at most 3d + 2 vertices. This combinatorial result may be of independent interest.

Cite as

Sriram Bhyravarapu, Pritesh Kumar, Madhumita Kundu, Shivesh K. Roy, Sahiba, and Saket Saurabh. Kernelization in Almost Linear Time for Clustering into Bounded Vertex Cover Components. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bhyravarapu_et_al:LIPIcs.MFCS.2025.20,
  author =	{Bhyravarapu, Sriram and Kumar, Pritesh and Kundu, Madhumita and Roy, Shivesh K. and Sahiba and Saurabh, Saket},
  title =	{{Kernelization in Almost Linear Time for Clustering into Bounded Vertex Cover Components}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.20},
  URN =		{urn:nbn:de:0030-drops-241276},
  doi =		{10.4230/LIPIcs.MFCS.2025.20},
  annote =	{Keywords: Parameterized complexity, Polynomial Kernels, Vertex Cover, Finite Forbidden Characterization}
}
Document
Difference Determines the Degree: Structural Kernelizations of Component Order Connectivity

Authors: Sriram Bhyravarapu, Satyabrata Jana, Saket Saurabh, and Roohani Sharma

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We consider the question of polynomial kernelization of a generalization of the classical Vertex Cover problem parameterized by a parameter that is provably smaller than the solution size. In particular, we focus on the c-Component Order Connectivity problem (c-COC) where given an undirected graph G and a non-negative integer t, the objective is to test whether there exists a set S of size at most t such that every component of G-S contains at most c vertices. Such a set S is called a c-coc set. It is known that c-COC admits a kernel with {O}(ct) vertices. Observe that for c = 1, this corresponds to the Vertex Cover problem. We study the c-Component Order Connectivity problem parameterized by the size of a d-coc set (c-COC/d-COC), where c,d ∈ ℕ with c ≤ d. In particular, the input is an undirected graph G, a positive integer t and a set M of at most k vertices of G, such that the size of each connected component in G - M is at most d. The question is to find a set S of vertices of size at most t, such that the size of each connected component in G - S is at most c. In this paper, we give a kernel for c-COC/d-COC with O(k^{d-c+1}) vertices and O(k^{d-c+2}) edges. Our result exhibits that the difference in d and c, and not their absolute values, determines the exact degree of the polynomial in the kernel size. When c = d = 1, the c-COC/d-COC problem is exactly the Vertex Cover problem parameterized by the solution size, which has a kernel with O(k) vertices and O(k²) edges, and this is asymptotically tight [Dell & Melkebeek, JACM 2014]. We also show that the dependence of d-c in the exponent of the kernel size cannot be avoided under reasonable complexity assumptions.

Cite as

Sriram Bhyravarapu, Satyabrata Jana, Saket Saurabh, and Roohani Sharma. Difference Determines the Degree: Structural Kernelizations of Component Order Connectivity. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bhyravarapu_et_al:LIPIcs.IPEC.2023.5,
  author =	{Bhyravarapu, Sriram and Jana, Satyabrata and Saurabh, Saket and Sharma, Roohani},
  title =	{{Difference Determines the Degree: Structural Kernelizations of Component Order Connectivity}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.5},
  URN =		{urn:nbn:de:0030-drops-194241},
  doi =		{10.4230/LIPIcs.IPEC.2023.5},
  annote =	{Keywords: Kernelization, Component Order Connectivity, Vertex Cover, Structural Parameterizations}
}
Document
Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs

Authors: Sriram Bhyravarapu, Subrahmanyam Kalyanasundaram, and Rogers Mathew

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
A Conflict-Free Open Neighborhood coloring, abbreviated CFON^* coloring, of a graph G = (V,E) using k colors is an assignment of colors from a set of k colors to a subset of vertices of V(G) such that every vertex sees some color exactly once in its open neighborhood. The minimum k for which G has a CFON^* coloring using k colors is called the CFON^* chromatic number of G, denoted by χ_{ON}^*(G). The analogous notion for closed neighborhood is called CFCN^* coloring and the analogous parameter is denoted by χ_{CN}^*(G). The problem of deciding whether a given graph admits a CFON^* (or CFCN^*) coloring that uses k colors is NP-complete. Below, we describe briefly the main results of this paper. - For k ≥ 3, we show that if G is a K_{1,k}-free graph then χ_{ON}^*(G) = O(k²log Δ), where Δ denotes the maximum degree of G. Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if G is a line graph, then χ_{CN}^*(G) = O(log Δ). As an open question, they had asked if their result could be extended to claw-free (K_{1,3}-free) graphs, which are a superclass of line graphs. Since it is known that the CFCN^* chromatic number of a graph is at most twice its CFON^* chromatic number, our result positively answers the open question posed by Dębski and Przybyło. - We show that if the minimum degree of any vertex in G is Ω(Δ/{log^ε Δ}) for some ε ≥ 0, then χ_{ON}^*(G) = O(log^{1+ε}Δ). This is a generalization of the result given by Dębski and Przybyło in the same paper where they showed that if the minimum degree of any vertex in G is Ω(Δ), then χ_{ON}^*(G)= O(logΔ). - We give a polynomial time algorithm to compute χ_{ON}^*(G) for interval graphs G. This answers in positive the open question posed by Reddy [Theoretical Comp. Science, 2018] to determine whether the CFON^* chromatic number can be computed in polynomial time on interval graphs. - We explore biconvex graphs, a subclass of bipartite graphs and give a polynomial time algorithm to compute their CFON^* chromatic number. This is interesting as Abel et al. [SIDMA, 2018] had shown that it is NP-complete to decide whether a planar bipartite graph G has χ_{ON}^*(G) = k where k ∈ {1, 2, 3}.

Cite as

Sriram Bhyravarapu, Subrahmanyam Kalyanasundaram, and Rogers Mathew. Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bhyravarapu_et_al:LIPIcs.MFCS.2022.19,
  author =	{Bhyravarapu, Sriram and Kalyanasundaram, Subrahmanyam and Mathew, Rogers},
  title =	{{Conflict-Free Coloring on Claw-Free Graphs and Interval Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.19},
  URN =		{urn:nbn:de:0030-drops-168173},
  doi =		{10.4230/LIPIcs.MFCS.2022.19},
  annote =	{Keywords: Conflict-free coloring, Interval graphs, Bipartite graphs, Claw-free graphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail