Search Results

Documents authored by Bonichon, Nicolas


Document
Freeze-Tag in L₁ Has Wake-Up Time Five with Linear Complexity

Authors: Nicolas Bonichon, Arnaud Casteigts, Cyril Gavoille, and Nicolas Hanusse

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
The Freeze-Tag Problem, introduced in Arkin et al. (SODA'02) consists of waking up a swarm of n robots, starting from a single active robot. In the basic geometric version, every robot is given coordinates in the plane. As soon as a robot is awakened, it can move towards inactive robots to wake them up. The goal is to minimize the makespan of the last robot, the makespan. Despite significant progress on the computational complexity of this problem and on approximation algorithms, the characterization of exact bounds on the makespan remains one of the main open questions. In this paper, we settle this question for the 𝓁₁-norm, showing that a makespan of at most 5r can always be achieved, where r is the maximum distance between the initial active robot and any sleeping robot. Moreover, a schedule achieving a makespan of at most 5r can be computed in time O(n). Both bounds, the time and the makespan are optimal. Our results also imply for the 𝓁₂-norm a new upper bound of 5√2r ≈ 7.07r on the makespan, improving the best known bound of (5+2√2+√5)r ≈ 10.06r. Along the way, we introduce new linear time wake-up strategies, that apply to any norm and show that an optimal bound on the makespan can always be achieved by a schedule computable in linear time.

Cite as

Nicolas Bonichon, Arnaud Casteigts, Cyril Gavoille, and Nicolas Hanusse. Freeze-Tag in L₁ Has Wake-Up Time Five with Linear Complexity. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonichon_et_al:LIPIcs.DISC.2024.9,
  author =	{Bonichon, Nicolas and Casteigts, Arnaud and Gavoille, Cyril and Hanusse, Nicolas},
  title =	{{Freeze-Tag in L₁ Has Wake-Up Time Five with Linear Complexity}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.9},
  URN =		{urn:nbn:de:0030-drops-212356},
  doi =		{10.4230/LIPIcs.DISC.2024.9},
  annote =	{Keywords: freeze-tag problem, metric, algorithm}
}
Document
Improved Routing on the Delaunay Triangulation

Authors: Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and Michiel Smid

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
A geometric graph G=(P,E) is a set of points in the plane and edges between pairs of points, where the weight of an edge is equal to the Euclidean distance between its two endpoints. In local routing we find a path through G from a source vertex s to a destination vertex t, using only knowledge of the current vertex, its incident edges, and the locations of s and t. We present an algorithm for local routing on the Delaunay triangulation, and show that it finds a path between a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous bound of 5.9|st|.

Cite as

Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and Michiel Smid. Improved Routing on the Delaunay Triangulation. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 22:1-22:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bonichon_et_al:LIPIcs.ESA.2018.22,
  author =	{Bonichon, Nicolas and Bose, Prosenjit and De Carufel, Jean-Lou and Despr\'{e}, Vincent and Hill, Darryl and Smid, Michiel},
  title =	{{Improved Routing on the Delaunay Triangulation}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{22:1--22:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.22},
  URN =		{urn:nbn:de:0030-drops-94857},
  doi =		{10.4230/LIPIcs.ESA.2018.22},
  annote =	{Keywords: Delaunay, local routing, geometric, graph}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail