Search Results

Documents authored by Brandenburg, Björn Bernhard


Document
Blocking Optimality in Distributed Real-Time Locking Protocols

Authors: Björn Bernhard Brandenburg

Published in: LITES, Volume 1, Issue 2 (2014). Leibniz Transactions on Embedded Systems, Volume 1, Issue 2


Abstract
Lower and upper bounds on the maximum priority inversion blocking (pi-blocking) that is generally unavoidable in distributed multiprocessor real-time locking protocols (where resources may be accessed only from specific synchronization processors) are established. Prior work on suspension-based shared-memory multiprocessor locking protocols (which require resources to be accessible from all processors) has established asymptotically tight bounds of Ω(m) and Ω(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively, where m denotes the total number of processors and n denotes the number of tasks. In this paper, it is shown that, in the case of distributed semaphore protocols, there exist two different task allocation scenarios that give rise to distinct lower bounds. In the case of co-hosted task allocation, where application tasks may also be assigned to synchronization processors (i.e., processors hosting critical sections), Ω(Φ · n) maximum pi-blocking is unavoidable for some tasks under any locking protocol under both suspension-aware and suspension-oblivious schedulability analysis, where Φ denotes the ratio of the maximum response time to the shortest period. In contrast, in the case of disjoint task allocation (i.e., if application tasks may not be assigned to synchronization processors), only Ω(m) and Ω(n) maximum pi-blocking is fundamentally unavoidable under suspension-oblivious and suspension-aware analysis, respectively, as in the shared-memory case. These bounds are shown to be asymptotically tight with the construction of two new distributed real-time locking protocols that ensure O(m) and O(n) maximum pi-blocking under suspension-oblivious and suspension-aware analysis, respectively.

Cite as

Björn Bernhard Brandenburg. Blocking Optimality in Distributed Real-Time Locking Protocols. In LITES, Volume 1, Issue 2 (2014). Leibniz Transactions on Embedded Systems, Volume 1, Issue 2, pp. 01:1-01:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@Article{brandenburg:LITES-v001-i002-a001,
  author =	{Brandenburg, Bj\"{o}rn Bernhard},
  title =	{{Blocking Optimality in Distributed Real-Time Locking Protocols}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{01:1--01:22},
  ISSN =	{2199-2002},
  year =	{2014},
  volume =	{1},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v001-i002-a001},
  doi =		{10.4230/LITES-v001-i002-a001},
  annote =	{Keywords: Distributed multiprocessor real-time systems, Real-time locking, Priority inversion, Blocking optimality}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail