Search Results

Documents authored by Campos, Victor A.


Found 2 Possible Name Variants:

Campos, Victor A.

Document
Dual Parameterization of Weighted Coloring

Authors: Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva

Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)


Abstract
Given a graph G, a proper k-coloring of G is a partition c = (S_i)_{i in [1,k]} of V(G) into k stable sets S_1,..., S_k. Given a weight function w: V(G) -> R^+, the weight of a color S_i is defined as w(i) = max_{v in S_i} w(v) and the weight of a coloring c as w(c) = sum_{i=1}^{k} w(i). Guan and Zhu [Inf. Process. Lett., 1997] defined the weighted chromatic number of a pair (G,w), denoted by sigma(G,w), as the minimum weight of a proper coloring of G. The problem of determining sigma(G,w) has received considerable attention during the last years, and has been proved to be notoriously hard: for instance, it is NP-hard on split graphs, unsolvable on n-vertex trees in time n^{o(log n)} unless the ETH fails, and W[1]-hard on forests parameterized by the size of a largest tree. We focus on the so-called dual parameterization of the problem: given a vertex-weighted graph (G,w) and an integer k, is sigma(G,w) <= sum_{v in V(G)} w(v) - k? This parameterization has been recently considered by Escoffier [WG, 2016], who provided an FPT algorithm running in time 2^{O(k log k)} * n^{O(1)}, and asked which kernel size can be achieved for the problem. We provide an FPT algorithm running in time 9^k * n^{O(1)}, and prove that no algorithm in time 2^{o(k)} * n^{O(1)} exists under the ETH. On the other hand, we present a kernel with at most (2^{k-1}+1) (k-1) vertices, and rule out the existence of polynomial kernels unless NP subseteq coNP/poly, even on split graphs with only two different weights. Finally, we identify some classes of graphs on which the problem admits a polynomial kernel, in particular interval graphs and subclasses of split graphs, and in the latter case we present lower bounds on the degrees of the polynomials.

Cite as

Júlio Araújo, Victor A. Campos, Carlos Vinícius G. C. Lima, Vinícius Fernandes dos Santos, Ignasi Sau, and Ana Silva. Dual Parameterization of Weighted Coloring. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 12:1-12:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.IPEC.2018.12,
  author =	{Ara\'{u}jo, J\'{u}lio and Campos, Victor A. and Lima, Carlos Vin{\'\i}cius G. C. and Fernandes dos Santos, Vin{\'\i}cius and Sau, Ignasi and Silva, Ana},
  title =	{{Dual Parameterization of Weighted Coloring}},
  booktitle =	{13th International Symposium on Parameterized and Exact Computation (IPEC 2018)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Paul, Christophe and Pilipczuk, Michal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.12},
  URN =		{urn:nbn:de:0030-drops-102134},
  doi =		{10.4230/LIPIcs.IPEC.2018.12},
  annote =	{Keywords: weighted coloring, max coloring, parameterized complexity, dual parameterization, FPT algorithms, polynomial kernels, split graphs, interval graphs}
}

Campos, Victor

Document
New Menger-Like Dualities in Digraphs and Applications to Half-Integral Linkages

Authors: Victor Campos, Jonas Costa, Raul Lopes, and Ignasi Sau

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We present new min-max relations in digraphs between the number of paths satisfying certain conditions and the order of the corresponding cuts. We define these objects in order to capture, in the context of solving the half-integral linkage problem, the essential properties needed for reaching a large bramble of congestion two (or any other constant) from the terminal set. This strategy has been used ad-hoc in several articles, usually with lengthy technical proofs, and our objective is to abstract it to make it applicable in a simpler and unified way. We provide two proofs of the min-max relations, one consisting in applying Menger’s Theorem on appropriately defined auxiliary digraphs, and an alternative simpler one using matroids, however with worse polynomial running time. As an application, we manage to simplify and improve several results of Edwards et al. [ESA 2017] and of Giannopoulou et al. [SODA 2022] about finding half-integral linkages in digraphs. Concerning the former, besides being simpler, our proof provides an almost optimal bound on the strong connectivity of a digraph for it to be half-integrally feasible under the presence of a large bramble of congestion two (or equivalently, if the directed tree-width is large, which is the hard case). Concerning the latter, our proof uses brambles as rerouting objects instead of cylindrical grids, hence yielding much better bounds and being somehow independent of a particular topology. We hope that our min-max relations will find further applications as, in our opinion, they are simple, robust, and versatile to be easily applicable to different types of routing problems in digraphs.

Cite as

Victor Campos, Jonas Costa, Raul Lopes, and Ignasi Sau. New Menger-Like Dualities in Digraphs and Applications to Half-Integral Linkages. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{campos_et_al:LIPIcs.ESA.2023.30,
  author =	{Campos, Victor and Costa, Jonas and Lopes, Raul and Sau, Ignasi},
  title =	{{New Menger-Like Dualities in Digraphs and Applications to Half-Integral Linkages}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{30:1--30:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.30},
  URN =		{urn:nbn:de:0030-drops-186838},
  doi =		{10.4230/LIPIcs.ESA.2023.30},
  annote =	{Keywords: directed graphs, min-max relation, half-integral linkage, directed disjoint paths, bramble, parameterized complexity, matroids}
}
Document
A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover

Authors: Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a graph G and a positive integer k, and the objective is to decide whether G contains a minimal vertex cover of size at least k. Motivated by the kernelization of MMVC with parameter k, our main contribution is to introduce a simple general framework to obtain lower bounds on the degrees of a certain type of polynomial kernels for vertex-optimization problems, which we call {lop-kernels}. Informally, this type of kernels is required to preserve large optimal solutions in the reduced instance, and captures the vast majority of existing kernels in the literature. As a consequence of this framework, we show that the trivial quadratic kernel for MMVC is essentially optimal, answering a question of Boria et al. [Discret. Appl. Math. 2015], and that the known cubic kernel for Maximum Minimal Feedback Vertex Set is also essentially optimal. On the positive side, given the (plausible) non-existence of subquadratic kernels for MMVC on general graphs, we provide subquadratic kernels on H-free graphs for several graphs H, such as the bull, the paw, or the complete graphs, by making use of the Erdős-Hajnal property in order to find an appropriate decomposition. Finally, we prove that MMVC does not admit polynomial kernels parameterized by the size of a minimum vertex cover of the input graph, even on bipartite graphs, unless NP ⊆ coNP / poly. This indicates that parameters smaller than the solution size are unlike to yield polynomial kernels for MMVC.

Cite as

Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau. A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{araujo_et_al:LIPIcs.IPEC.2021.4,
  author =	{Ara\'{u}jo, J\'{u}lio and Bougeret, Marin and Campos, Victor and Sau, Ignasi},
  title =	{{A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.4},
  URN =		{urn:nbn:de:0030-drops-153879},
  doi =		{10.4230/LIPIcs.IPEC.2021.4},
  annote =	{Keywords: Maximum minimal vertex cover, parameterized complexity, polynomial kernel, kernelization lower bound, Erd\H{o}s-Hajnal property, induced subgraphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail