Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)
Antonio Blanca, Sarah Cannon, and Will Perkins. Fast and Perfect Sampling of Subgraphs and Polymer Systems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 4:1-4:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{blanca_et_al:LIPIcs.APPROX/RANDOM.2022.4,
author = {Blanca, Antonio and Cannon, Sarah and Perkins, Will},
title = {{Fast and Perfect Sampling of Subgraphs and Polymer Systems}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
pages = {4:1--4:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-249-5},
ISSN = {1868-8969},
year = {2022},
volume = {245},
editor = {Chakrabarti, Amit and Swamy, Chaitanya},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.4},
URN = {urn:nbn:de:0030-drops-171261},
doi = {10.4230/LIPIcs.APPROX/RANDOM.2022.4},
annote = {Keywords: Random Sampling, perfect sampling, graphlets, polymer models, spin systems, percolation}
}
Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Sarah Cannon, Joshua J. Daymude, Cem Gökmen, Dana Randall, and Andréa W. Richa. A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 54:1-54:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{cannon_et_al:LIPIcs.APPROX-RANDOM.2019.54,
author = {Cannon, Sarah and Daymude, Joshua J. and G\"{o}kmen, Cem and Randall, Dana and Richa, Andr\'{e}a W.},
title = {{A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing Particle Systems}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
pages = {54:1--54:22},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-125-2},
ISSN = {1868-8969},
year = {2019},
volume = {145},
editor = {Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.54},
URN = {urn:nbn:de:0030-drops-112696},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.54},
annote = {Keywords: Markov chains, Programmable matter, Cluster expansion}
}
Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)
Sarah Cannon, David A. Levin, and Alexandre Stauffer. Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 34:1-34:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{cannon_et_al:LIPIcs.APPROX-RANDOM.2017.34,
author = {Cannon, Sarah and Levin, David A. and Stauffer, Alexandre},
title = {{Polynomial Mixing of the Edge-Flip Markov Chain for Unbiased Dyadic Tilings}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
pages = {34:1--34:21},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-044-6},
ISSN = {1868-8969},
year = {2017},
volume = {81},
editor = {Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.34},
URN = {urn:nbn:de:0030-drops-75830},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2017.34},
annote = {Keywords: Random dyadic tilings, spectral gap, rapid mixing}
}
Published in: LIPIcs, Volume 20, 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)
Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 20, pp. 172-184, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)
@InProceedings{cannon_et_al:LIPIcs.STACS.2013.172,
author = {Cannon, Sarah and Demaine, Erik D. and Demaine, Martin L. and Eisenstat, Sarah and Patitz, Matthew J. and Schweller, Robert T. and Summers, Scott M and Winslow, Andrew},
title = {{Two Hands Are Better Than One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM}},
booktitle = {30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013)},
pages = {172--184},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-939897-50-7},
ISSN = {1868-8969},
year = {2013},
volume = {20},
editor = {Portier, Natacha and Wilke, Thomas},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2013.172},
URN = {urn:nbn:de:0030-drops-39321},
doi = {10.4230/LIPIcs.STACS.2013.172},
annote = {Keywords: abstract tile assembly model, hierarchical tile assembly model, two-handed tile assembly model, algorithmic self-assembly, DNA computing, biocomputing}
}