Search Results

Documents authored by Carrière, Mathieu


Document
Sparsification of the Generalized Persistence Diagrams for Scalability Through Gradient Descent

Authors: Mathieu Carrière, Seunghyun Kim, and Woojin Kim

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The generalized persistence diagram (GPD) is a natural extension of the classical persistence barcode to the setting of multi-parameter persistence and beyond. The GPD is defined as an integer-valued function whose domain is the set of intervals in the indexing poset of a persistence module, and is known to be able to capture richer topological information than its single-parameter counterpart. However, computing the GPD is computationally prohibitive due to the sheer size of the interval set. Restricting the GPD to a subset of intervals provides a way to manage this complexity, compromising discriminating power to some extent. However, identifying and computing an effective restriction of the domain that minimizes the loss of discriminating power remains an open challenge. In this work, we introduce a novel method for optimizing the domain of the GPD through gradient descent optimization. To achieve this, we introduce a loss function tailored to optimize the selection of intervals, balancing computational efficiency and discriminative accuracy. The design of the loss function is based on the known erosion stability property of the GPD. We showcase the efficiency of our sparsification method for dataset classification in supervised machine learning. Experimental results demonstrate that our sparsification method significantly reduces the time required for computing the GPDs associated to several datasets, while maintaining classification accuracies comparable to those achieved using full GPDs. Our method thus opens the way for the use of GPD-based methods to applications at an unprecedented scale.

Cite as

Mathieu Carrière, Seunghyun Kim, and Woojin Kim. Sparsification of the Generalized Persistence Diagrams for Scalability Through Gradient Descent. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{carriere_et_al:LIPIcs.SoCG.2025.29,
  author =	{Carri\`{e}re, Mathieu and Kim, Seunghyun and Kim, Woojin},
  title =	{{Sparsification of the Generalized Persistence Diagrams for Scalability Through Gradient Descent}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.29},
  URN =		{urn:nbn:de:0030-drops-231810},
  doi =		{10.4230/LIPIcs.SoCG.2025.29},
  annote =	{Keywords: Multi-parameter persistent homology, Generalized persistence diagram, Generalized rank invariant, Non-convex optimization, Gradient descent}
}
Document
Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study

Authors: Andrew Aukerman, Mathieu Carrière, Chao Chen, Kevin Gardner, Raúl Rabadán, and Rami Vanguri

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Persistent homology is a common tool of topological data analysis, whose main descriptor, the persistence diagram, aims at computing and encoding the geometry and topology of given datasets. In this article, we present a novel application of persistent homology to characterize the spatial arrangement of immune and epithelial (tumor) cells within the breast cancer immune microenvironment. More specifically, quantitative and robust characterizations are built by computing persistence diagrams out of a staining technique (quantitative multiplex immunofluorescence) which allows us to obtain spatial coordinates and stain intensities on individual cells. The resulting persistence diagrams are evaluated as characteristic biomarkers of cancer subtype and prognostic biomarker of overall survival. For a cohort of approximately 700 breast cancer patients with median 8.5-year clinical follow-up, we show that these persistence diagrams outperform and complement the usual descriptors which capture spatial relationships with nearest neighbor analysis. This provides new insights and possibilities on the general problem of building (topology-based) biomarkers that are characteristic and predictive of cancer subtype, overall survival and response to therapy.

Cite as

Andrew Aukerman, Mathieu Carrière, Chao Chen, Kevin Gardner, Raúl Rabadán, and Rami Vanguri. Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aukerman_et_al:LIPIcs.SoCG.2020.11,
  author =	{Aukerman, Andrew and Carri\`{e}re, Mathieu and Chen, Chao and Gardner, Kevin and Rabad\'{a}n, Ra\'{u}l and Vanguri, Rami},
  title =	{{Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.11},
  URN =		{urn:nbn:de:0030-drops-121695},
  doi =		{10.4230/LIPIcs.SoCG.2020.11},
  annote =	{Keywords: Topological data analysis, persistence diagrams}
}
Document
On the Metric Distortion of Embedding Persistence Diagrams into Separable Hilbert Spaces

Authors: Mathieu Carrière and Ulrich Bauer

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity of the space of persistence diagrams equipped with their diagram distances, most of the recent attempts at using persistence diagrams in machine learning have been done through kernel methods, i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in which all computations can be performed easily. Since persistence diagrams enjoy theoretical stability guarantees for the diagram distances, the metric properties of the feature map, i.e., the relationship between the Hilbert distance and the diagram distances, are of central interest for understanding if the persistence diagram guarantees carry over to the embedding. In this article, we study the possibility of embedding persistence diagrams into separable Hilbert spaces with bi-Lipschitz maps. In particular, we show that for several stable embeddings into infinite-dimensional Hilbert spaces defined in the literature, any lower bound must depend on the cardinalities of the persistence diagrams, and that when the Hilbert space is finite dimensional, finding a bi-Lipschitz embedding is impossible, even when restricting the persistence diagrams to have bounded cardinalities.

Cite as

Mathieu Carrière and Ulrich Bauer. On the Metric Distortion of Embedding Persistence Diagrams into Separable Hilbert Spaces. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 21:1-21:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{carriere_et_al:LIPIcs.SoCG.2019.21,
  author =	{Carri\`{e}re, Mathieu and Bauer, Ulrich},
  title =	{{On the Metric Distortion of Embedding Persistence Diagrams into Separable Hilbert Spaces}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{21:1--21:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.21},
  URN =		{urn:nbn:de:0030-drops-104259},
  doi =		{10.4230/LIPIcs.SoCG.2019.21},
  annote =	{Keywords: Topological Data Analysis, Persistence Diagrams, Hilbert space embedding}
}
Document
Local Equivalence and Intrinsic Metrics between Reeb Graphs

Authors: Mathieu Carrière and Steve Oudot

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer graphics or topological data analysis literature. Defining good metrics between these objects has become an important question for applications, where it matters to quantify the extent by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing novel distances such as functional distortion or interleaving that are provably more discriminative than the so-called bottleneck distance, being true metrics whereas the latter is only a pseudo-metric. Their main drawback compared to the bottleneck distance is to be comparatively hard (if at all possible) to evaluate. Here we take the opposite view on the problem and show that the bottleneck distance is in fact good enough locally, in the sense that it is able to discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the other metrics do. This suggests considering the intrinsic metrics induced by these distances, which turn out to be all globally equivalent. This novel viewpoint on the study of Reeb graphs has a potential impact on applications, where one may not only be interested in discriminating between data but also in interpolating between them.

Cite as

Mathieu Carrière and Steve Oudot. Local Equivalence and Intrinsic Metrics between Reeb Graphs. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{carriere_et_al:LIPIcs.SoCG.2017.25,
  author =	{Carri\`{e}re, Mathieu and Oudot, Steve},
  title =	{{Local Equivalence and Intrinsic Metrics between Reeb Graphs}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.25},
  URN =		{urn:nbn:de:0030-drops-71794},
  doi =		{10.4230/LIPIcs.SoCG.2017.25},
  annote =	{Keywords: Reeb Graphs, Extended Persistence, Induced Metrics, Topological Data Analysis}
}
Document
Structure and Stability of the 1-Dimensional Mapper

Authors: Mathieu Carrière and Steve Oudot

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
Given a continuous function f:X->R and a cover I of its image by intervals, the Mapper is the nerve of a refinement of the pullback cover f^{-1}(I). Despite its success in applications, little is known about the structure and stability of this construction from a theoretical point of view. As a pixelized version of the Reeb graph of f, it is expected to capture a subset of its features (branches, holes), depending on how the interval cover is positioned with respect to the critical values of the function. Its stability should also depend on this positioning. We propose a theoretical framework relating the structure of the Mapper to that of the Reeb graph, making it possible to predict which features will be present and which will be absent in the Mapper given the function and the cover, and for each feature, to quantify its degree of (in-)stability. Using this framework, we can derive guarantees on the structure of the Mapper, on its stability, and on its convergence to the Reeb graph as the granularity of the cover I goes to zero.

Cite as

Mathieu Carrière and Steve Oudot. Structure and Stability of the 1-Dimensional Mapper. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{carriere_et_al:LIPIcs.SoCG.2016.25,
  author =	{Carri\`{e}re, Mathieu and Oudot, Steve},
  title =	{{Structure and Stability of the 1-Dimensional Mapper}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.25},
  URN =		{urn:nbn:de:0030-drops-59175},
  doi =		{10.4230/LIPIcs.SoCG.2016.25},
  annote =	{Keywords: Mapper, Reeb Graph, Extended Persistence, Topological Data Analysis}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail