Search Results

Documents authored by Cochez, Michael


Document
Survey
Knowledge Graph Embeddings: Open Challenges and Opportunities

Authors: Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Kalemi Vakaj, and Gerard de Melo

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
While Knowledge Graphs (KGs) have long been used as valuable sources of structured knowledge, in recent years, KG embeddings have become a popular way of deriving numeric vector representations from them, for instance, to support knowledge graph completion and similarity search. This study surveys advances as well as open challenges and opportunities in this area. For instance, the most prominent embedding models focus primarily on structural information. However, there has been notable progress in incorporating further aspects, such as semantics, multi-modal, temporal, and multilingual features. Most embedding techniques are assessed using human-curated benchmark datasets for the task of link prediction, neglecting other important real-world KG applications. Many approaches assume a static knowledge graph and are unable to account for dynamic changes. Additionally, KG embeddings may encode data biases and lack interpretability. Overall, this study provides an overview of promising research avenues to learn improved KG embeddings that can address a more diverse range of use cases.

Cite as

Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Kalemi Vakaj, and Gerard de Melo. Knowledge Graph Embeddings: Open Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 4:1-4:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{biswas_et_al:TGDK.1.1.4,
  author =	{Biswas, Russa and Kaffee, Lucie-Aim\'{e}e and Cochez, Michael and Dumbrava, Stefania and Jendal, Theis E. and Lissandrini, Matteo and Lopez, Vanessa and Menc{\'\i}a, Eneldo Loza and Paulheim, Heiko and Sack, Harald and Vakaj, Edlira Kalemi and de Melo, Gerard},
  title =	{{Knowledge Graph Embeddings: Open Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:32},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.4},
  URN =		{urn:nbn:de:0030-drops-194783},
  doi =		{10.4230/TGDK.1.1.4},
  annote =	{Keywords: Knowledge Graphs, KG embeddings, Link prediction, KG applications}
}
Document
Survey
Structural Summarization of Semantic Graphs Using Quotients

Authors: Ansgar Scherp, David Richerby, Till Blume, Michael Cochez, and Jannik Rau

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Graph summarization is the process of computing a compact version of an input graph while preserving chosen features of its structure. We consider semantic graphs where the features include edge labels and label sets associated with a vertex. Graph summaries are typically much smaller than the original graph. Applications that depend on the preserved features can perform their tasks on the summary, but much faster or with less memory overhead, while producing the same outcome as if they were applied on the original graph. In this survey, we focus on structural summaries based on quotients that organize vertices in equivalence classes of shared features. Structural summaries are particularly popular for semantic graphs and have the advantage of defining a precise graph-based output. We consider approaches and algorithms for both static and temporal graphs. A common example of quotient-based structural summaries is bisimulation, and we discuss this in detail. While there exist other surveys on graph summarization, to the best of our knowledge, we are the first to bring in a focused discussion on quotients, bisimulation, and their relation. Furthermore, structural summarization naturally connects well with formal logic due to the discrete structures considered. We complete the survey with a brief description of approaches beyond structural summaries.

Cite as

Ansgar Scherp, David Richerby, Till Blume, Michael Cochez, and Jannik Rau. Structural Summarization of Semantic Graphs Using Quotients. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 12:1-12:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.1.1.12,
  author =	{Scherp, Ansgar and Richerby, David and Blume, Till and Cochez, Michael and Rau, Jannik},
  title =	{{Structural Summarization of Semantic Graphs Using Quotients}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{12:1--12:25},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.12},
  URN =		{urn:nbn:de:0030-drops-194862},
  doi =		{10.4230/TGDK.1.1.12},
  annote =	{Keywords: graph summarization, quotients, stratified bisimulation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail