Search Results

Documents authored by Daruki, Samira


Document
Sublinear Algorithms for MAXCUT and Correlation Clustering

Authors: Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We study sublinear algorithms for two fundamental graph problems, MAXCUT and correlation clustering. Our focus is on constructing core-sets as well as developing streaming algorithms for these problems. Constant space algorithms are known for dense graphs for these problems, while Omega(n) lower bounds exist (in the streaming setting) for sparse graphs. Our goal in this paper is to bridge the gap between these extremes. Our first result is to construct core-sets of size O~(n^{1-delta}) for both the problems, on graphs with average degree n^{delta} (for any delta >0). This turns out to be optimal, under the exponential time hypothesis (ETH). Our core-set analysis is based on studying random-induced sub-problems of optimization problems. To the best of our knowledge, all the known results in our parameter range rely crucially on near-regularity assumptions. We avoid these by using a biased sampling approach, which we analyze using recent results on concentration of quadratic functions. We then show that our construction yields a 2-pass streaming (1+epsilon)-approximation for both problems; the algorithm uses O~(n^{1-delta}) space, for graphs of average degree n^delta.

Cite as

Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear Algorithms for MAXCUT and Correlation Clustering. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bhaskara_et_al:LIPIcs.ICALP.2018.16,
  author =	{Bhaskara, Aditya and Daruki, Samira and Venkatasubramanian, Suresh},
  title =	{{Sublinear Algorithms for MAXCUT and Correlation Clustering}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.16},
  URN =		{urn:nbn:de:0030-drops-90203},
  doi =		{10.4230/LIPIcs.ICALP.2018.16},
  annote =	{Keywords: Sublinear algorithms, Streaming algorithms, Core-sets, Maximum cut, Correlation clustering}
}
Document
Streaming Verification of Graph Properties

Authors: Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubramanian

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computationally limited streaming client (the verifier) hands over a large data set to an untrusted server (the prover) in the cloud and the two parties run a protocol to confirm the correctness of result with high probability. SIPs are particularly interesting for problems that are hard to solve (or even approximate) well in a streaming setting. The most notable of these problems is finding maximum matchings, which has received intense interest in recent years but has strong lower bounds even for constant factor approximations. In this paper, we present efficient streaming interactive proofs that can verify maximum matchings exactly. Our results cover all flavors of matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming verifiers for approximate metric TSP. In particular, these are the first efficient results for weighted matchings and for metric TSP in any streaming verification model.

Cite as

Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubramanian. Streaming Verification of Graph Properties. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{abdullah_et_al:LIPIcs.ISAAC.2016.3,
  author =	{Abdullah, Amirali and Daruki, Samira and Roy, Chitradeep Dutta and Venkatasubramanian, Suresh},
  title =	{{Streaming Verification of Graph Properties}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.3},
  URN =		{urn:nbn:de:0030-drops-67730},
  doi =		{10.4230/LIPIcs.ISAAC.2016.3},
  annote =	{Keywords: streaming interactive proofs, verification, matching, travelling salesman problem, graph algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail