Search Results

Documents authored by Davies, James


Document
Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs

Authors: James Davies, Agelos Georgakopoulos, Meike Hatzel, and Rose McCarty

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
In this paper, we consider the class 𝒞^d of sphere intersection graphs in R^d for d ≥ 2. We show that for each integer t, the class of all graphs in 𝒞^d that exclude K_{t,t} as a subgraph has strongly sublinear separators. We also prove that 𝒞^d has asymptotic dimension at most 2d+2.

Cite as

James Davies, Agelos Georgakopoulos, Meike Hatzel, and Rose McCarty. Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2025.36,
  author =	{Davies, James and Georgakopoulos, Agelos and Hatzel, Meike and McCarty, Rose},
  title =	{{Strongly Sublinear Separators and Bounded Asymptotic Dimension for Sphere Intersection Graphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.36},
  URN =		{urn:nbn:de:0030-drops-231881},
  doi =		{10.4230/LIPIcs.SoCG.2025.36},
  annote =	{Keywords: Intersection graphs, strongly sublinear separators, asymptotic dimension}
}
Document
A Solution to Ringel’s Circle Problem

Authors: James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We construct families of circles in the plane such that their tangency graphs have arbitrarily large girth and chromatic number. This provides a strong negative answer to Ringel’s circle problem (1959). The proof relies on a (multidimensional) version of Gallai’s theorem with polynomial constraints, which we derive from the Hales-Jewett theorem and which may be of independent interest.

Cite as

James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak. A Solution to Ringel’s Circle Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 33:1-33:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2022.33,
  author =	{Davies, James and Keller, Chaya and Kleist, Linda and Smorodinsky, Shakhar and Walczak, Bartosz},
  title =	{{A Solution to Ringel’s Circle Problem}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{33:1--33:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.33},
  URN =		{urn:nbn:de:0030-drops-160413},
  doi =		{10.4230/LIPIcs.SoCG.2022.33},
  annote =	{Keywords: circle arrangement, chromatic number, Gallai’s theorem, polynomial method}
}
Document
Colouring Polygon Visibility Graphs and Their Generalizations

Authors: James Davies, Tomasz Krawczyk, Rose McCarty, and Bartosz Walczak

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
Curve pseudo-visibility graphs generalize polygon and pseudo-polygon visibility graphs and form a hereditary class of graphs. We prove that every curve pseudo-visibility graph with clique number ω has chromatic number at most 3⋅4^{ω-1}. The proof is carried through in the setting of ordered graphs; we identify two conditions satisfied by every curve pseudo-visibility graph (considered as an ordered graph) and prove that they are sufficient for the claimed bound. The proof is algorithmic: both the clique number and a colouring with the claimed number of colours can be computed in polynomial time.

Cite as

James Davies, Tomasz Krawczyk, Rose McCarty, and Bartosz Walczak. Colouring Polygon Visibility Graphs and Their Generalizations. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2021.29,
  author =	{Davies, James and Krawczyk, Tomasz and McCarty, Rose and Walczak, Bartosz},
  title =	{{Colouring Polygon Visibility Graphs and Their Generalizations}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.29},
  URN =		{urn:nbn:de:0030-drops-138281},
  doi =		{10.4230/LIPIcs.SoCG.2021.29},
  annote =	{Keywords: Visibility graphs, \chi-boundedness, pseudoline arrangements, ordered graphs}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail