Search Results

Documents authored by Dewaskar, Miheer


Document
Controlling a Population

Authors: Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
We introduce a new setting where a population of agents, each modelled by a finite-state system, are controlled uniformly: the controller applies the same action to every agent. The framework is largely inspired by the control of a biological system, namely a population of yeasts, where the controller may only change the environment common to all cells. We study a synchronisation problem for such populations: no matter how individual agents react to the actions of the controller, the controller aims at driving all agents synchronously to a target state. The agents are naturally represented by a non-deterministic finite state automaton (NFA), the same for every agent, and the whole system is encoded as a 2-player game. The first player chooses actions, and the second player resolves non-determinism for each agent. The game with m agents is called the m-population game. This gives rise to a parameterized control problem (where control refers to 2 player games), namely the population control problem: can playerone control the m-population game for all m in N whatever playertwo does? In this paper, we prove that the population control problem is decidable, and it is a EXPTIME-complete problem. As far as we know, this is one of the first results on parameterized control. Our algorithm, not based on cut-off techniques, produces winning strategies which are symbolic, that i they do not need to count precisely how the population is spread between states. We also show that if the is no winning strategy, then there is a population size cutoff such that playerone wins the m-population game if and only if m< \cutoff. Surprisingly, \cutoff can be doubly exponential in the number of states of the NFA, with tight upper and lower bounds.

Cite as

Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert. Controlling a Population. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bertrand_et_al:LIPIcs.CONCUR.2017.12,
  author =	{Bertrand, Nathalie and Dewaskar, Miheer and Genest, Blaise and Gimbert, Hugo},
  title =	{{Controlling a Population}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.12},
  URN =		{urn:nbn:de:0030-drops-78000},
  doi =		{10.4230/LIPIcs.CONCUR.2017.12},
  annote =	{Keywords: Model-checking, control, parametric systems}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail