Search Results

Documents authored by Dinur, Itai


Document
Locality-Preserving Hashing for Shifts with Connections to Cryptography

Authors: Elette Boyle, Itai Dinur, Niv Gilboa, Yuval Ishai, Nathan Keller, and Ohad Klein

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Can we sense our location in an unfamiliar environment by taking a sublinear-size sample of our surroundings? Can we efficiently encrypt a message that only someone physically close to us can decrypt? To solve this kind of problems, we introduce and study a new type of hash functions for finding shifts in sublinear time. A function h:{0,1}ⁿ → ℤ_n is a (d,δ) locality-preserving hash function for shifts (LPHS) if: (1) h can be computed by (adaptively) querying d bits of its input, and (2) Pr[h(x) ≠ h(x ≪ 1) + 1] ≤ δ, where x is random and ≪ 1 denotes a cyclic shift by one bit to the left. We make the following contributions. - Near-optimal LPHS via Distributed Discrete Log. We establish a general two-way connection between LPHS and algorithms for distributed discrete logarithm in the generic group model. Using such an algorithm of Dinur et al. (Crypto 2018), we get LPHS with near-optimal error of δ = Õ(1/d²). This gives an unusual example for the usefulness of group-based cryptography in a post-quantum world. We extend the positive result to non-cyclic and worst-case variants of LPHS. - Multidimensional LPHS. We obtain positive and negative results for a multidimensional extension of LPHS, making progress towards an optimal 2-dimensional LPHS. - Applications. We demonstrate the usefulness of LPHS by presenting cryptographic and algorithmic applications. In particular, we apply multidimensional LPHS to obtain an efficient "packed" implementation of homomorphic secret sharing and a sublinear-time implementation of location-sensitive encryption whose decryption requires a significantly overlapping view.

Cite as

Elette Boyle, Itai Dinur, Niv Gilboa, Yuval Ishai, Nathan Keller, and Ohad Klein. Locality-Preserving Hashing for Shifts with Connections to Cryptography. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 27:1-27:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boyle_et_al:LIPIcs.ITCS.2022.27,
  author =	{Boyle, Elette and Dinur, Itai and Gilboa, Niv and Ishai, Yuval and Keller, Nathan and Klein, Ohad},
  title =	{{Locality-Preserving Hashing for Shifts with Connections to Cryptography}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{27:1--27:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.27},
  URN =		{urn:nbn:de:0030-drops-156231},
  doi =		{10.4230/LIPIcs.ITCS.2022.27},
  annote =	{Keywords: Sublinear algorithms, metric embeddings, shift finding, discrete logarithm, homomorphic secret sharing}
}
Document
Tight Bounds on Online Checkpointing Algorithms

Authors: Achiya Bar-On, Itai Dinur, Orr Dunkelman, Rani Hod, Nathan Keller, Eyal Ronen, and Adi Shamir

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
The problem of online checkpointing is a classical problem with numerous applications which had been studied in various forms for almost 50 years. In the simplest version of this problem, a user has to maintain k memorized checkpoints during a long computation, where the only allowed operation is to move one of the checkpoints from its old time to the current time, and his goal is to keep the checkpoints as evenly spread out as possible at all times. At ICALP'13 Bringmann et al. studied this problem as a special case of an online/offline optimization problem in which the deviation from uniformity is measured by the natural discrepancy metric of the worst case ratio between real and ideal segment lengths. They showed this discrepancy is smaller than 1.59-o(1) for all k, and smaller than ln4-o(1)~~1.39 for the sparse subset of k's which are powers of 2. In addition, they obtained upper bounds on the achievable discrepancy for some small values of k. In this paper we solve the main problems left open in the ICALP'13 paper by proving that ln4 is a tight upper and lower bound on the asymptotic discrepancy for all large k, and by providing tight upper and lower bounds (in the form of provably optimal checkpointing algorithms, some of which are in fact better than those of Bringmann et al.) for all the small values of k <= 10.

Cite as

Achiya Bar-On, Itai Dinur, Orr Dunkelman, Rani Hod, Nathan Keller, Eyal Ronen, and Adi Shamir. Tight Bounds on Online Checkpointing Algorithms. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{baron_et_al:LIPIcs.ICALP.2018.13,
  author =	{Bar-On, Achiya and Dinur, Itai and Dunkelman, Orr and Hod, Rani and Keller, Nathan and Ronen, Eyal and Shamir, Adi},
  title =	{{Tight Bounds on Online Checkpointing Algorithms}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{13:1--13:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.13},
  URN =		{urn:nbn:de:0030-drops-90179},
  doi =		{10.4230/LIPIcs.ICALP.2018.13},
  annote =	{Keywords: checkpoint, checkpointing algorithm, online algorithm, uniform distribution, discrepancy}
}
Document
Cube Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium

Authors: Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir

Published in: Dagstuhl Seminar Proceedings, Volume 9031, Symmetric Cryptography (2009)


Abstract
CRYPTO 2008 saw the introduction of the hash function MD6 and of cube attacks, a type of algebraic attack applicable to cryptographic functions having a low-degree algebraic normal form over GF(2). This paper applies cube attacks to reduced round MD6, finding the full 128-bit key of a 14-round MD6 with complexity 2\^22 (which takes less than a minute on a single PC). This is the best key recovery attack announced so far for MD6. We then introduce a new class of attacks called cube testers, based on efficient property-testing algorithms, and apply them to MD6 and to the stream cipher Trivium. Unlike the standard cube attacks, cube testers detect nonrandom behavior rather than performing key extraction, but they can also attack cryptographic schemes described by nonrandom polynomials of relatively high degree. Applied to MD6, cube testers detect nonrandomness over 18 rounds in 2\^17 complexity; applied to a slightly modified version of the MD6 compression function, they can distinguish 66 rounds from random in 2\^24 complexity. Cube testers give distinguishers on Trivium reduced to 790 rounds from random with 2^30 complexity and detect nonrandomness over 885 rounds in 2\^27, improving on the original 767-round cube attack.

Cite as

Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium. In Symmetric Cryptography. Dagstuhl Seminar Proceedings, Volume 9031, pp. 1-22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{aumasson_et_al:DagSemProc.09031.6,
  author =	{Aumasson, Jean-Philippe and Dinur, Itai and Meier, Willi and Shamir, Adi},
  title =	{{Cube Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium}},
  booktitle =	{Symmetric Cryptography},
  pages =	{1--22},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9031},
  editor =	{Helena Handschuh and Stefan Lucks and Bart Preneel and Phillip Rogaway},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09031.6},
  URN =		{urn:nbn:de:0030-drops-19443},
  doi =		{10.4230/DagSemProc.09031.6},
  annote =	{Keywords: Cube attacks, property testing, MD6, Trivium}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail