Search Results

Documents authored by Dollevoet, Twan


Document
Analyzing a Family of Formulations for Cyclic Crew Rostering

Authors: Thomas Breugem, Twan Dollevoet, and Dennis Huisman

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
In this paper, we analyze a family of formulations for the Cyclic Crew Rostering Problem (CCRP), in which a cyclic roster has to be constructed for a group of employees. Each formulation in the family is based on a partition of the roster. Intuitively, finer partitions give rise to a formulation with fewer variables, but possibly more constraints. Coarser partitions lead to more variables, but might allow to incorporate many of the constraints implicitly. We derive analytical results regarding the relative strength of the different formulations, which can serve as a guideline for formulating a given problem instance. Furthermore, we propose a column generation approach, and use it to compare the strength of the formulations empirically. Both the theoretical and computational results demonstrate the importance of choosing a suitable formulation. In particular, for practical instances of Netherlands Railways, stronger lower bounds are obtained, and more than 90% of the roster constraints can be modeled implicitly.

Cite as

Thomas Breugem, Twan Dollevoet, and Dennis Huisman. Analyzing a Family of Formulations for Cyclic Crew Rostering. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 7:1-7:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{breugem_et_al:OASIcs.ATMOS.2020.7,
  author =	{Breugem, Thomas and Dollevoet, Twan and Huisman, Dennis},
  title =	{{Analyzing a Family of Formulations for Cyclic Crew Rostering}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{7:1--7:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.7},
  URN =		{urn:nbn:de:0030-drops-131438},
  doi =		{10.4230/OASIcs.ATMOS.2020.7},
  annote =	{Keywords: Crew Planning, Roster Sequence, Column Generation, Railway Optimization}
}
Document
Complete Volume
OASIcs, Volume 59, ATMOS'17, Complete Volume

Authors: Gianlorenzo D'Angelo and Twan Dollevoet

Published in: OASIcs, Volume 59, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)


Abstract
OASIcs, Volume 59, ATMOS'17, Complete Volume

Cite as

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). Open Access Series in Informatics (OASIcs), Volume 59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Proceedings{dangelo_et_al:OASIcs.ATMOS.2017,
  title =	{{OASIcs, Volume 59, ATMOS'17, Complete Volume}},
  booktitle =	{17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-042-2},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{59},
  editor =	{D'Angelo, Gianlorenzo and Dollevoet, Twan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2017},
  URN =		{urn:nbn:de:0030-drops-79109},
  doi =		{10.4230/OASIcs.ATMOS.2017},
  annote =	{Keywords: Analysis of Algorithms and Problem Complexity, Optimization, Combinatorics, Graph Theory, Applications}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Organization

Authors: Gianlorenzo D'Angelo and Twan Dollevoet

Published in: OASIcs, Volume 59, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)


Abstract
Front Matter, Table of Contents, Preface, Organization

Cite as

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). Open Access Series in Informatics (OASIcs), Volume 59, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dangelo_et_al:OASIcs.ATMOS.2017.0,
  author =	{D'Angelo, Gianlorenzo and Dollevoet, Twan},
  title =	{{Front Matter, Table of Contents, Preface, Organization}},
  booktitle =	{17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)},
  pages =	{0:i--0:x},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-042-2},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{59},
  editor =	{D'Angelo, Gianlorenzo and Dollevoet, Twan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2017.0},
  URN =		{urn:nbn:de:0030-drops-78872},
  doi =		{10.4230/OASIcs.ATMOS.2017.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Organization}
}
Document
Delay Management including Capacities of Stations

Authors: Twan Dollevoet, Marie Schmidt, and Anita Schöbel

Published in: OASIcs, Volume 20, 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2011)


Abstract
The question of delay management (DM) is whether trains should wait for delayed feeder trains or should depart on time. Solutions to this problem strongly depend on the capacity constraints of the tracks making sure that no two trains can use the same piece of track at the same time. While these capacity constraints have been included in integer programming formulations for DM, the capacity constraints of the stations (only offering a limited number of platforms) have been neglected so far. This can lead to highly infeasible solutions. In order to overcome this problem we suggest two new formulations for DM both including the stations' capacities. We present numerical results showing that the assignment-based formulation is clearly superior to the packing formulation. We furthermore propose an iterative algorithm in which we improve the platform assignment with respect to the current delays of the trains at each station in each step. We will show that this subproblem asks for coloring the nodes of a graph with a given number of colors while minimizing the weight of the conflicts. We show that the graph to be colored is an interval graph and that the problem can be solved in polynomial time by presenting a totally unimodular IP formulation.

Cite as

Twan Dollevoet, Marie Schmidt, and Anita Schöbel. Delay Management including Capacities of Stations. In 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 20, pp. 88-99, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{dollevoet_et_al:OASIcs.ATMOS.2011.88,
  author =	{Dollevoet, Twan and Schmidt, Marie and Sch\"{o}bel, Anita},
  title =	{{Delay Management including Capacities of Stations}},
  booktitle =	{11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems},
  pages =	{88--99},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-33-0},
  ISSN =	{2190-6807},
  year =	{2011},
  volume =	{20},
  editor =	{Caprara, Alberto and Kontogiannis, Spyros},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2011.88},
  URN =		{urn:nbn:de:0030-drops-32699},
  doi =		{10.4230/OASIcs.ATMOS.2011.88},
  annote =	{Keywords: Delay management, station capacities}
}
Document
Delay Management with Re-Routing of Passengers

Authors: Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schoebel

Published in: OASIcs, Volume 12, 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'09) (2009)


Abstract
Trains often arrive delayed at stations where passengers have to change to other trains. The question of delay management is whether these trains should wait for the original train or depart on time. In traditional delay management models passengers always take their originally planned route. This means, they are in case of a missed connection always delayed with the cycle time of the timetable. In this paper, we propose a model where re-routing of passengers is incorporated. \\ To describe the problem we represent it as an event-activity network similar to the one used in traditional delay management, with some additional events to incorporate origin and destination of the passengers. We prove NP-hardness of this problem, and we present an integer programming formulation for which we report the first numerical results. Furthermore, we discuss the variant in which we assume fixed costs for maintaining transfers and we present a polynomial algorithm for the special case of only one origin-destination pair.

Cite as

Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schoebel. Delay Management with Re-Routing of Passengers. In 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'09). Open Access Series in Informatics (OASIcs), Volume 12, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{dollevoet_et_al:OASIcs.ATMOS.2009.2143,
  author =	{Dollevoet, Twan and Huisman, Dennis and Schmidt, Marie and Schoebel, Anita},
  title =	{{Delay Management with Re-Routing of Passengers}},
  booktitle =	{9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'09)},
  pages =	{1--17},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-11-8},
  ISSN =	{2190-6807},
  year =	{2009},
  volume =	{12},
  editor =	{Clausen, Jens and Di Stefano, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2009.2143},
  URN =		{urn:nbn:de:0030-drops-21433},
  doi =		{10.4230/OASIcs.ATMOS.2009.2143},
  annote =	{Keywords: Transportation, Delay Management, Re-Routing, OD-pairs Transportation, Delay Management, Re-Routing, OD-pairs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail