Search Results

Documents authored by Dyllong, Eva


Document
Verification and Validation for Femur Prosthesis Surgery

Authors: Ekaterina Auer, Roger Cuypers, Eva Dyllong, Stefan Kiel, and Wolfram Luther

Published in: Dagstuhl Seminar Proceedings, Volume 9471, Computer-assisted proofs - tools, methods and applications (2010)


Abstract
In this paper, we describe how verified methods we are developing in the course of the project TellHim&S (Interval Based Methods For Adaptive Hierarchical Models In Modeling And Simulation Systems) can be applied in the context of the biomechanical project PROREOP (Development of a new prognosis system to optimize patient-specific pre- operative surgical planning for the human skeletal system). On the one hand, it includes the use of verified hierarchical structures for reliable geometric modeling, object decomposition, distance computation and path planning. On the other hand, we cover such tasks as verification and validation assessment and propagation of differently described uncertainties through system models in engineering or mechanics.

Cite as

Ekaterina Auer, Roger Cuypers, Eva Dyllong, Stefan Kiel, and Wolfram Luther. Verification and Validation for Femur Prosthesis Surgery. In Computer-assisted proofs - tools, methods and applications. Dagstuhl Seminar Proceedings, Volume 9471, pp. 1-22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{auer_et_al:DagSemProc.09471.4,
  author =	{Auer, Ekaterina and Cuypers, Roger and Dyllong, Eva and Kiel, Stefan and Luther, Wolfram},
  title =	{{Verification and Validation for Femur Prosthesis Surgery}},
  booktitle =	{Computer-assisted proofs - tools, methods and applications},
  pages =	{1--22},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{9471},
  editor =	{B. Malcolm Brown and Erich Kaltofen and Shin'ichi Oishi and Siegfried M. Rump},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09471.4},
  URN =		{urn:nbn:de:0030-drops-25133},
  doi =		{10.4230/DagSemProc.09471.4},
  annote =	{Keywords: Graphical interface construction, superquadrics, 3D modeling, biomedical engineering}
}
Document
A Note on Some Applications of Interval Arithmetic in Hierarchical Solid Modeling

Authors: Eva Dyllong

Published in: Dagstuhl Seminar Proceedings, Volume 8021, Numerical Validation in Current Hardware Architectures (2008)


Abstract
Techniques of reliable computing like interval arithmetic can be used to guarantee a reliable solution even in the presence of numerical round-off errors. The need to trace bounds for the error function separately can be eliminated using these techniques. In this talk, we focus on some demonstrations how the techniques and algorithms of reliable computing can be applied to the construction and further processing of hierarchical solid representations using the octree model as an example. An octree is a common hierarchical data structure to represent 3D geometrical objects in solid modeling systems or to reconstruct a real scene. The solid representation is based on recursive cell decompositions of the space. Unfortunately, the data structure may require a large amount of memory when it uses a set of very small cubic nodes to approximate a solid. In this talk, we present a novel generalization of the octree model created from a CSG object that uses interval arithmetic and allows us to extend the tests for classifying points in space as inside, on the boundary or outside the object to handle whole sections of the space at once. Tree nodes with additional information about relevant parts of the CSG object are introduced in order to reduce the depth of the required subdivision. Furthermore, this talk is concerned with interval-based algorithms for reliable proximity queries between the extended octrees and with further processing of the structure. We conclude the talk with some examples of implementations.

Cite as

Eva Dyllong. A Note on Some Applications of Interval Arithmetic in Hierarchical Solid Modeling. In Numerical Validation in Current Hardware Architectures. Dagstuhl Seminar Proceedings, Volume 8021, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{dyllong:DagSemProc.08021.5,
  author =	{Dyllong, Eva},
  title =	{{A Note on Some Applications of Interval Arithmetic in Hierarchical Solid Modeling}},
  booktitle =	{Numerical Validation in Current Hardware Architectures},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8021},
  editor =	{Annie Cuyt and Walter Kr\"{a}mer and Wolfram Luther and Peter Markstein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08021.5},
  URN =		{urn:nbn:de:0030-drops-14408},
  doi =		{10.4230/DagSemProc.08021.5},
  annote =	{Keywords: Reliable solid modeling, hierarchical data structure}
}
Document
A Multifunctional Historical Document Research System

Authors: Eva Dyllong

Published in: Dagstuhl Seminar Proceedings, Volume 6491, Digital Historical Corpora- Architecture, Annotation, and Retrieval (2007)


Abstract
In this talk, the key components of a multifunctional historical document research system are discussed. An ongoing project which aims at creating a representative corpus of documents that reflect the impact of the German philosopher Friedrich Nietzsche in the period 1865-1945 forms the case study for the system. The realisation of the system includes several working fields: the collection of relevant historical documents, the digitization and choice of a suitable library-oriented data standards for archival storage, the design and implementation of a database, the development of fuzzy techniques for searching on documents with a non-standard orthography, the preparation of communication, annotation and visualisation tools, and the design of a user interface adapted for heterogeneous user group ranging from interested amateurs to experts.

Cite as

Eva Dyllong. A Multifunctional Historical Document Research System. In Digital Historical Corpora- Architecture, Annotation, and Retrieval. Dagstuhl Seminar Proceedings, Volume 6491, pp. 1-3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{dyllong:DagSemProc.06491.4,
  author =	{Dyllong, Eva},
  title =	{{A Multifunctional Historical Document Research System}},
  booktitle =	{Digital Historical Corpora- Architecture, Annotation, and Retrieval},
  pages =	{1--3},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{6491},
  editor =	{Lou Burnard and Milena Dobreva and Norbert Fuhr and Anke L\"{u}deling},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06491.4},
  URN =		{urn:nbn:de:0030-drops-10456},
  doi =		{10.4230/DagSemProc.06491.4},
  annote =	{Keywords: Literature database, digitization and archival storage}
}
Document
Integration of reliable algorithms into modeling software

Authors: Wolfram Luther, Gerhard Haßlinger, Ekaterina Auer, Eva Dyllong, Daniela Traczinski, and Holger Traczinski

Published in: Dagstuhl Seminar Proceedings, Volume 5391, Algebraic and Numerical Algorithms and Computer-assisted Proofs (2006)


Abstract
In this note we discuss strategies that would enhance modern modeling and simulation software (MSS) with reliable routines using validated data types, controlled rounding, algorithmic differentiation and interval equation or initial value problem solver. Several target systems are highlighted. In stochastic traffic modeling, the computation of workload distributions plays a prominent role since they influence the quality of service parameters. INoWaTIV is a workload analysis tool that uses two different techniques: the polynomial factorization approach and the Wiener-Hopf factorization to determine the work-load distributions of GI/GI/1 and SMP/GI/1 service systems accurately. Two extensions of a multibody modeling and simulation software were developed to model kinematic and dynamic properties of multibody systems in a validated way. Furthermore, an interface was created that allows the computation of convex hulls and reliable lower bounds for the distances between subpav-ing-encoded objects constructed with SIVIA (Set Inverter Via Interval Analysis).

Cite as

Wolfram Luther, Gerhard Haßlinger, Ekaterina Auer, Eva Dyllong, Daniela Traczinski, and Holger Traczinski. Integration of reliable algorithms into modeling software. In Algebraic and Numerical Algorithms and Computer-assisted Proofs. Dagstuhl Seminar Proceedings, Volume 5391, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{luther_et_al:DagSemProc.05391.5,
  author =	{Luther, Wolfram and Ha{\ss}linger, Gerhard and Auer, Ekaterina and Dyllong, Eva and Traczinski, Daniela and Traczinski, Holger},
  title =	{{Integration of reliable algorithms into modeling software}},
  booktitle =	{Algebraic and Numerical Algorithms and Computer-assisted Proofs},
  pages =	{1--17},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5391},
  editor =	{Bruno Buchberger and Shin'ichi Oishi and Michael Plum and Sigfried M. Rump},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05391.5},
  URN =		{urn:nbn:de:0030-drops-4441},
  doi =		{10.4230/DagSemProc.05391.5},
  annote =	{Keywords: Reliable algorithms, stochastic traffic modeling, multibody modeling tools, geometric modeling}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail