Search Results

Documents authored by Epifanov, Vladislav


Document
MaxCut Above Guarantee

Authors: Ivan Bliznets and Vladislav Epifanov

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
In this paper, we study the computational complexity of the Maximum Cut problem parameterized above guarantee. Our main result provides a linear kernel for the Maximum Cut problem in connected graphs parameterized above the spanning tree. This kernel significantly improves the previous O(k⁵) kernel given by Madathil, Saurabh, and Zehavi [ToCS 2020]. We also provide subexponential running time algorithms for this problem in special classes of graphs: chordal, split, and co-bipartite. We complete the picture by lower bounds under the assumption of the ETH. Moreover, we initiate a study of the Maximum Cut problem above 2/3|E| lower bound in tripartite graphs.

Cite as

Ivan Bliznets and Vladislav Epifanov. MaxCut Above Guarantee. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 22:1-22:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bliznets_et_al:LIPIcs.MFCS.2023.22,
  author =	{Bliznets, Ivan and Epifanov, Vladislav},
  title =	{{MaxCut Above Guarantee}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{22:1--22:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.22},
  URN =		{urn:nbn:de:0030-drops-185560},
  doi =		{10.4230/LIPIcs.MFCS.2023.22},
  annote =	{Keywords: Tripartite, 3-colorable, chordal, maximum cut, FPT-algorithm, linear kernel}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail