Search Results

Documents authored by Esfandiari, Hossein


Document
Feature Cross Search via Submodular Optimization

Authors: Lin Chen, Hossein Esfandiari, Gang Fu, Vahab S. Mirrokni, and Qian Yu

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
In this paper, we study feature cross search as a fundamental primitive in feature engineering. The importance of feature cross search especially for the linear model has been known for a while, with well-known textbook examples. In this problem, the goal is to select a small subset of features, combine them to form a new feature (called the crossed feature) by considering their Cartesian product, and find feature crosses to learn an accurate model. In particular, we study the problem of maximizing a normalized Area Under the Curve (AUC) of the linear model trained on the crossed feature column. First, we show that it is not possible to provide an n^{1/log log n}-approximation algorithm for this problem unless the exponential time hypothesis fails. This result also rules out the possibility of solving this problem in polynomial time unless 𝖯 = NP. On the positive side, by assuming the naïve Bayes assumption, we show that there exists a simple greedy (1-1/e)-approximation algorithm for this problem. This result is established by relating the AUC to the total variation of the commutator of two probability measures and showing that the total variation of the commutator is monotone and submodular. To show this, we relate the submodularity of this function to the positive semi-definiteness of a corresponding kernel matrix. Then, we use Bochner’s theorem to prove the positive semi-definiteness by showing that its inverse Fourier transform is non-negative everywhere. Our techniques and structural results might be of independent interest.

Cite as

Lin Chen, Hossein Esfandiari, Gang Fu, Vahab S. Mirrokni, and Qian Yu. Feature Cross Search via Submodular Optimization. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ESA.2021.31,
  author =	{Chen, Lin and Esfandiari, Hossein and Fu, Gang and Mirrokni, Vahab S. and Yu, Qian},
  title =	{{Feature Cross Search via Submodular Optimization}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.31},
  URN =		{urn:nbn:de:0030-drops-146124},
  doi =		{10.4230/LIPIcs.ESA.2021.31},
  annote =	{Keywords: Feature engineering, feature cross, submodularity}
}
Document
Beating Ratio 0.5 for Weighted Oblivious Matching Problems

Authors: Melika Abolhassani, T.-H. Hubert Chan, Fei Chen, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Mahini Hamid, and Xiaowei Wu

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We prove the first non-trivial performance ratios strictly above 0.5 for weighted versions of the oblivious matching problem. Even for the unweighted version, since Aronson, Dyer, Frieze, and Suen first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty years several attempts have been made to improve this ratio, until Chan, Chen, Wu and Zhao successfully achieved a significant ratio of 0.523 very recently (SODA 2014). To the best of our knowledge, our work is the first in the literature that considers the node-weighted and edge-weighted versions of the problem in arbitrary graphs (as opposed to bipartite graphs). (1) For arbitrary node weights, we prove that a weighted version of the Ranking algorithm has ratio strictly above 0.5. We have discovered a new structural property of the ranking algorithm: if a node has two unmatched neighbors at the end of algorithm, then it will still be matched even when its rank is demoted to the bottom. This property allows us to form LP constraints for both the node-weighted and the unweighted oblivious matching problems. As a result, we prove that the ratio for the node-weighted case is at least 0.501512. Interestingly via the structural property, we can also improve slightly the ratio for the unweighted case to 0.526823 (from the previous best 0.523166 in SODA 2014). (2) For a bounded number of distinct edge weights, we show that ratio strictly above 0.5 can be achieved by partitioning edges carefully according to the weights, and running the (unweighted) Ranking algorithm on each part. Our analysis is based on a new primal-dual framework known as \emph{matching coverage}, in which dual feasibility is bypassed. Instead, only dual constraints corresponding to edges in an optimal matching are satisfied. Using this framework we also design and analyze an algorithm for the edge-weighted online bipartite matching problem with free disposal. We prove that for the case of bounded online degrees, the ratio is strictly above 0.5.

Cite as

Melika Abolhassani, T.-H. Hubert Chan, Fei Chen, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Mahini Hamid, and Xiaowei Wu. Beating Ratio 0.5 for Weighted Oblivious Matching Problems. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{abolhassani_et_al:LIPIcs.ESA.2016.3,
  author =	{Abolhassani, Melika and Chan, T.-H. Hubert and Chen, Fei and Esfandiari, Hossein and Hajiaghayi, MohammadTaghi and Hamid, Mahini and Wu, Xiaowei},
  title =	{{Beating Ratio 0.5 for Weighted Oblivious Matching Problems}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.3},
  URN =		{urn:nbn:de:0030-drops-63443},
  doi =		{10.4230/LIPIcs.ESA.2016.3},
  annote =	{Keywords: Weighted matching, oblivious algorithms, Ranking, linear programming}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail