Search Results

Documents authored by Fagerberg, Rolf


Document
On Finding Longest Palindromic Subsequences Using Longest Common Subsequences

Authors: Gerth Stølting Brodal, Rolf Fagerberg, and Casper Moldrup Rysgaard

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Two standard textbook problems illustrating dynamic programming are to find the longest common subsequence (LCS) between two strings and to find the longest palindromic subsequence (LPS) of a single string. A popular claim is that the longest palindromic subsequence in a string can be computed as the longest common subsequence between the string and the reversed string. We prove that the correctness of this claim depends on how the longest common subsequence is computed. In particular, we prove that the classical dynamic programming solution by Wagner and Fischer [JACM 1974] for finding an LCS in fact does find an LPS, while a slightly different LCS backtracking strategy makes the algorithm fail to always report a palindrome.

Cite as

Gerth Stølting Brodal, Rolf Fagerberg, and Casper Moldrup Rysgaard. On Finding Longest Palindromic Subsequences Using Longest Common Subsequences. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.ESA.2024.35,
  author =	{Brodal, Gerth St{\o}lting and Fagerberg, Rolf and Rysgaard, Casper Moldrup},
  title =	{{On Finding Longest Palindromic Subsequences Using Longest Common Subsequences}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{35:1--35:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.35},
  URN =		{urn:nbn:de:0030-drops-211068},
  doi =		{10.4230/LIPIcs.ESA.2024.35},
  annote =	{Keywords: Palindromic subsequence, longest common subsequence, dynamic programming}
}
Document
An Experimental Study of External Memory Algorithms for Connected Components

Authors: Gerth Stølting Brodal, Rolf Fagerberg, David Hammer, Ulrich Meyer, Manuel Penschuck, and Hung Tran

Published in: LIPIcs, Volume 190, 19th International Symposium on Experimental Algorithms (SEA 2021)


Abstract
We empirically investigate algorithms for solving Connected Components in the external memory model. In particular, we study whether the randomized O(Sort(E)) algorithm by Karger, Klein, and Tarjan can be implemented to compete with practically promising and simpler algorithms having only slightly worse theoretical cost, namely Borůvka’s algorithm and the algorithm by Sibeyn and collaborators. For all algorithms, we develop and test a number of tuning options. Our experiments are executed on a large set of different graph classes including random graphs, grids, geometric graphs, and hyperbolic graphs. Among our findings are: The Sibeyn algorithm is a very strong contender due to its simplicity and due to an added degree of freedom in its internal workings when used in the Connected Components setting. With the right tunings, the Karger-Klein-Tarjan algorithm can be implemented to be competitive in many cases. Higher graph density seems to benefit Karger-Klein-Tarjan relative to Sibeyn. Borůvka’s algorithm is not competitive with the two others.

Cite as

Gerth Stølting Brodal, Rolf Fagerberg, David Hammer, Ulrich Meyer, Manuel Penschuck, and Hung Tran. An Experimental Study of External Memory Algorithms for Connected Components. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 23:1-23:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brodal_et_al:LIPIcs.SEA.2021.23,
  author =	{Brodal, Gerth St{\o}lting and Fagerberg, Rolf and Hammer, David and Meyer, Ulrich and Penschuck, Manuel and Tran, Hung},
  title =	{{An Experimental Study of External Memory Algorithms for Connected Components}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{23:1--23:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2021.23},
  URN =		{urn:nbn:de:0030-drops-137958},
  doi =		{10.4230/LIPIcs.SEA.2021.23},
  annote =	{Keywords: Connected Components, Experimental Evaluation, External Memory, Graph Algorithms, Randomization}
}
Document
On Optimal Balance in B-Trees: What Does It Cost to Stay in Perfect Shape?

Authors: Rolf Fagerberg, David Hammer, and Ulrich Meyer

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Any B-tree has height at least ceil[log_B(n)]. Static B-trees achieving this height are easy to build. In the dynamic case, however, standard B-tree rebalancing algorithms only maintain a height within a constant factor of this optimum. We investigate exactly how close to ceil[log_B(n)] the height of dynamic B-trees can be maintained as a function of the rebalancing cost. In this paper, we prove a lower bound on the cost of maintaining optimal height ceil[log_B(n)], which shows that this cost must increase from Omega(1/B) to Omega(n/B) rebalancing per update as n grows from one power of B to the next. We also provide an almost matching upper bound, demonstrating this lower bound to be essentially tight. We then give a variant upper bound which can maintain near-optimal height at low cost. As two special cases, we can maintain optimal height for all but a vanishing fraction of values of n using Theta(log_B(n)) amortized rebalancing cost per update and we can maintain a height of optimal plus one using O(1/B) amortized rebalancing cost per update. More generally, for any rebalancing budget, we can maintain (as n grows from one power of B to the next) optimal height essentially up to the point where the lower bound requires the budget to be exceeded, after which optimal height plus one is maintained. Finally, we prove that this balancing scheme gives B-trees with very good storage utilization.

Cite as

Rolf Fagerberg, David Hammer, and Ulrich Meyer. On Optimal Balance in B-Trees: What Does It Cost to Stay in Perfect Shape?. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fagerberg_et_al:LIPIcs.ISAAC.2019.35,
  author =	{Fagerberg, Rolf and Hammer, David and Meyer, Ulrich},
  title =	{{On Optimal Balance in B-Trees: What Does It Cost to Stay in Perfect Shape?}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{35:1--35:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.35},
  URN =		{urn:nbn:de:0030-drops-115313},
  doi =		{10.4230/LIPIcs.ISAAC.2019.35},
  annote =	{Keywords: B-trees, Data structures, Lower bounds, Complexity}
}
Document
Fragile Complexity of Comparison-Based Algorithms

Authors: Peyman Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer, Manuel Penschuck, and Nodari Sitchinava

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We give a number of upper and lower bounds on the fragile complexity for fundamental problems, including Minimum, Selection, Sorting and Heap Construction. The results include both deterministic and randomized upper and lower bounds, and demonstrate a separation between the two settings for a number of problems. The depth of a comparator network is a straight-forward upper bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove that fragile complexity is a different and strictly easier property than the depth of comparator networks, in the sense that for some problems a fragile complexity equal to the best network depth can be achieved with less total work and that with randomization, even a lower fragile complexity is possible.

Cite as

Peyman Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer, Manuel Penschuck, and Nodari Sitchinava. Fragile Complexity of Comparison-Based Algorithms. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2019.2,
  author =	{Afshani, Peyman and Fagerberg, Rolf and Hammer, David and Jacob, Riko and Kostitsyna, Irina and Meyer, Ulrich and Penschuck, Manuel and Sitchinava, Nodari},
  title =	{{Fragile Complexity of Comparison-Based Algorithms}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.2},
  URN =		{urn:nbn:de:0030-drops-111235},
  doi =		{10.4230/LIPIcs.ESA.2019.2},
  annote =	{Keywords: Algorithms, comparison based algorithms, lower bounds}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail