Search Results

Documents authored by Finzi, Anaïs


Document
General Framework for Routing, Scheduling and Formal Timing Analysis in Deterministic Time-Aware Networks

Authors: Anaïs Finzi and Ramon Serna Oliver

Published in: LIPIcs, Volume 231, 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)


Abstract
In deterministic time-aware networks, such as TTEthernet (TTE) and Time Sensitive Networking (TSN), time-triggered (TT) communication are often routed and scheduled without taking into account other critical traffic such as Rate-Constrained (RC) traffic. Consequently, the impact of a static transmission schedule for TT traffic can prevent RC traffic from fulfilling their timing constraints. In this paper, we present a general framework for routing, scheduling and formal timing analysis (FTA) in deterministic time-aware networks (e.g. TSN, TTE). The general framework drives an iterative execution of different modules (i.e. routing, scheduling and FTA) searching for a solution that fulfills an arbitrary number of defined constraints (e.g. maximum end-to-end RC and TT latency) and optimization goals (e.g. minimize reception jitter). The result is an iteratively improved solution including the routing configuration for TT and RC flows, the static TT schedule, a formal analysis for the RC traffic, as well as any additional outputs satisfying user constraints (e.g. maximum RC jitter). We then do a performance evaluation of the general framework, with a proposed implementation of the necessary modules for TTEthernet networks with mixed time-triggered and rate-constrained traffic. The evaluation of our studied realistic use case shows that, using the general framework, the end-to-end latency for RC traffic can be reduced up to 28.3%, and the number of flows not fulfilling their deadlines divided by up to 3 compared to existing methods.

Cite as

Anaïs Finzi and Ramon Serna Oliver. General Framework for Routing, Scheduling and Formal Timing Analysis in Deterministic Time-Aware Networks. In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 231, pp. 8:1-8:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{finzi_et_al:LIPIcs.ECRTS.2022.8,
  author =	{Finzi, Ana\"{i}s and Serna Oliver, Ramon},
  title =	{{General Framework for Routing, Scheduling and Formal Timing Analysis in Deterministic Time-Aware Networks}},
  booktitle =	{34th Euromicro Conference on Real-Time Systems (ECRTS 2022)},
  pages =	{8:1--8:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-239-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{231},
  editor =	{Maggio, Martina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2022.8},
  URN =		{urn:nbn:de:0030-drops-163254},
  doi =		{10.4230/LIPIcs.ECRTS.2022.8},
  annote =	{Keywords: TSN, TTEthernet, AFDX, AVB, Modeling, Routing, Scheduling, Formal timing analysis, Worst-case analysis, Performance evaluation}
}
Document
Impact of AS6802 Synchronization Protocol on Time-Triggered and Rate-Constrained Traffic

Authors: Anaïs Finzi and Luxi Zhao

Published in: LIPIcs, Volume 165, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)


Abstract
TTEthernet is an Ethernet-based synchronized network technology compliant with the AFDX standard. It supports safety-critical applications by defining different traffic classes: Time-Triggered (TT), Rate-Constrained (RC), and Best-Effort traffic. The synchronization is managed through the AS6802 protocol, which defines so-called Protocol Control Frames (PCFs) to synchronize the local clock of each device. In this paper, we analyze the synchronization protocol to assess the impact of the PCFs on TT and RC traffic. We propose a method to decrease the impact of PCFs on TT and a new Network Calculus model to compute RC delay bounds with the influence of both PCF and TT traffic. We finish with a performance evaluation to i) assess the impact of PCFs, ii) show the benefits of our method in terms of reducing the impact of PCFs on TT traffic and iii) prove the necessity of taking the PCF traffic into account to compute correct RC worst-case delays and provide a safe system.

Cite as

Anaïs Finzi and Luxi Zhao. Impact of AS6802 Synchronization Protocol on Time-Triggered and Rate-Constrained Traffic. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 165, pp. 17:1-17:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{finzi_et_al:LIPIcs.ECRTS.2020.17,
  author =	{Finzi, Ana\"{i}s and Zhao, Luxi},
  title =	{{Impact of AS6802 Synchronization Protocol on Time-Triggered and Rate-Constrained Traffic}},
  booktitle =	{32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)},
  pages =	{17:1--17:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-152-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{165},
  editor =	{V\"{o}lp, Marcus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.17},
  URN =		{urn:nbn:de:0030-drops-123808},
  doi =		{10.4230/LIPIcs.ECRTS.2020.17},
  annote =	{Keywords: AS6802, TTE, Modeling, Performance analysis}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail