Published in: Dagstuhl Reports, Volume 14, Issue 11 (2025)
Vincent Fortuin, Mohammad Emtiyaz Khan, Mark van der Wilk, Zoubin Ghahramani, and Katharine Fisher. Rethinking the Role of Bayesianism in the Age of Modern AI (Dagstuhl Seminar 24461). In Dagstuhl Reports, Volume 14, Issue 11, pp. 40-59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@Article{fortuin_et_al:DagRep.14.11.40,
author = {Fortuin, Vincent and Khan, Mohammad Emtiyaz and van der Wilk, Mark and Ghahramani, Zoubin and Fisher, Katharine},
title = {{Rethinking the Role of Bayesianism in the Age of Modern AI (Dagstuhl Seminar 24461)}},
pages = {40--59},
journal = {Dagstuhl Reports},
ISSN = {2192-5283},
year = {2025},
volume = {14},
number = {11},
editor = {Fortuin, Vincent and Khan, Mohammad Emtiyaz and van der Wilk, Mark and Ghahramani, Zoubin and Fisher, Katharine},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.11.40},
URN = {urn:nbn:de:0030-drops-228200},
doi = {10.4230/DagRep.14.11.40},
annote = {Keywords: Bayesian machine learning, deep learning, foundation models, model selection, uncertainty estimation}
}
Published in: Dagstuhl Reports, Volume 13, Issue 2 (2023)
Vincent Fortuin, Yingzhen Li, Kevin Murphy, Stephan Mandt, and Laura Manduchi. Challenges and Perspectives in Deep Generative Modeling (Dagstuhl Seminar 23072). In Dagstuhl Reports, Volume 13, Issue 2, pp. 47-70, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@Article{fortuin_et_al:DagRep.13.2.47,
author = {Fortuin, Vincent and Li, Yingzhen and Murphy, Kevin and Mandt, Stephan and Manduchi, Laura},
title = {{Challenges and Perspectives in Deep Generative Modeling (Dagstuhl Seminar 23072)}},
pages = {47--70},
journal = {Dagstuhl Reports},
ISSN = {2192-5283},
year = {2023},
volume = {13},
number = {2},
editor = {Fortuin, Vincent and Li, Yingzhen and Murphy, Kevin and Mandt, Stephan and Manduchi, Laura},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.2.47},
URN = {urn:nbn:de:0030-drops-191817},
doi = {10.4230/DagRep.13.2.47},
annote = {Keywords: deep generative models, representation learning, generative modeling, neural data compression, out-of-distribution detection}
}