Search Results

Documents authored by Foster, Simon


Document
Formally Verified Simulations of State-Rich Processes Using Interaction Trees in Isabelle/HOL

Authors: Simon Foster, Chung-Kil Hur, and Jim Woodcock

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
Simulation and formal verification are important complementary techniques necessary in high assurance model-based systems development. In order to support coherent results, it is necessary to provide unifying semantics and automation for both activities. In this paper we apply Interaction Trees in Isabelle/HOL to produce a verification and simulation framework for state-rich process languages. We develop the core theory and verification techniques for Interaction Trees, use them to give a semantics to the CSP and Circus languages, and formally link our new semantics with the failures-divergences semantic model. We also show how the Isabelle code generator can be used to generate verified executable simulations for reactive and concurrent programs.

Cite as

Simon Foster, Chung-Kil Hur, and Jim Woodcock. Formally Verified Simulations of State-Rich Processes Using Interaction Trees in Isabelle/HOL. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{foster_et_al:LIPIcs.CONCUR.2021.20,
  author =	{Foster, Simon and Hur, Chung-Kil and Woodcock, Jim},
  title =	{{Formally Verified Simulations of State-Rich Processes Using Interaction Trees in Isabelle/HOL}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.20},
  URN =		{urn:nbn:de:0030-drops-143973},
  doi =		{10.4230/LIPIcs.CONCUR.2021.20},
  annote =	{Keywords: Coinduction, Process Algebra, Theorem Proving, Simulation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail