Search Results

Documents authored by Francisco, Alexandre P.


Document
Order-Preserving Pattern Matching Indeterminate Strings

Authors: Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai

Published in: LIPIcs, Volume 105, 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)


Abstract
Given an indeterminate string pattern p and an indeterminate string text t, the problem of order-preserving pattern matching with character uncertainties (muOPPM) is to find all substrings of t that satisfy one of the possible orderings defined by p. When the text and pattern are determinate strings, we are in the presence of the well-studied exact order-preserving pattern matching (OPPM) problem with diverse applications on time series analysis. Despite its relevance, the exact OPPM problem suffers from two major drawbacks: 1) the inability to deal with indetermination in the text, thus preventing the analysis of noisy time series; and 2) the inability to deal with indetermination in the pattern, thus imposing the strict satisfaction of the orders among all pattern positions. In this paper, we provide the first polynomial algorithms to answer the muOPPM problem when: 1) indetermination is observed on the pattern or text; and 2) indetermination is observed on both the pattern and the text and given by uncertainties between pairs of characters. First, given two strings with the same length m and O(r) uncertain characters per string position, we show that the muOPPM problem can be solved in O(mr lg r) time when one string is indeterminate and r in N^+ and in O(m^2) time when both strings are indeterminate and r=2. Second, given an indeterminate text string of length n, we show that muOPPM can be efficiently solved in polynomial time and linear space.

Cite as

Rui Henriques, Alexandre P. Francisco, Luís M. S. Russo, and Hideo Bannai. Order-Preserving Pattern Matching Indeterminate Strings. In 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 105, pp. 2:1-2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{henriques_et_al:LIPIcs.CPM.2018.2,
  author =	{Henriques, Rui and Francisco, Alexandre P. and Russo, Lu{\'\i}s M. S. and Bannai, Hideo},
  title =	{{Order-Preserving Pattern Matching Indeterminate Strings}},
  booktitle =	{29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-074-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{105},
  editor =	{Navarro, Gonzalo and Sankoff, David and Zhu, Binhai},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2018.2},
  URN =		{urn:nbn:de:0030-drops-87087},
  doi =		{10.4230/LIPIcs.CPM.2018.2},
  annote =	{Keywords: Order-preserving pattern matching, Indeterminate string analysis, Generic pattern matching, Satisfiability}
}
Document
Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

Authors: Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, and Cátia Vaz

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
Computing genetic evolution distances among a set of taxa dominates the running time of many phylogenetic inference methods. Most of genetic evolution distance definitions rely, even if indirectly, on computing the pairwise Hamming distance among sequences or profiles. We propose here an average-case linear-time algorithm to compute pairwise Hamming distances among a set of taxa under a given Hamming distance threshold. This article includes both a theoretical analysis and extensive experimental results concerning the proposed algorithm. We further show how this algorithm can be successfully integrated into a well known phylogenetic inference method.

Cite as

Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, and Cátia Vaz. Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{crochemore_et_al:LIPIcs.WABI.2017.9,
  author =	{Crochemore, Maxime and Francisco, Alexandre P. and Pissis, Solon P. and Vaz, C\'{a}tia},
  title =	{{Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{9:1--9:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.9},
  URN =		{urn:nbn:de:0030-drops-76529},
  doi =		{10.4230/LIPIcs.WABI.2017.9},
  annote =	{Keywords: computational biology, phylogenetic inference, Hamming distance}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail