Search Results

Documents authored by Fremont, Daniel J.


Document
Short Paper
LeanLTL: A Unifying Framework for Linear Temporal Logics in Lean (Short Paper)

Authors: Eric Vin, Kyle A. Miller, and Daniel J. Fremont

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We propose LeanLTL, a unifying framework for linear temporal logics in Lean 4. LeanLTL supports reasoning about traces that represent either infinite or finite linear time. The library allows traditional LTL syntax to be combined with arbitrary Lean expressions, making it straightforward to define properties involving numerical or other types. We prove that standard flavors of LTL can be embedded in our framework. The library also provides automation for reasoning about LeanLTL formulas in a way that facilitates using Lean’s existing tactics. Finally, we provide examples illustrating the utility of the library in reasoning about systems that come from applications.

Cite as

Eric Vin, Kyle A. Miller, and Daniel J. Fremont. LeanLTL: A Unifying Framework for Linear Temporal Logics in Lean (Short Paper). In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 37:1-37:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vin_et_al:LIPIcs.ITP.2025.37,
  author =	{Vin, Eric and Miller, Kyle A. and Fremont, Daniel J.},
  title =	{{LeanLTL: A Unifying Framework for Linear Temporal Logics in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{37:1--37:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.37},
  URN =		{urn:nbn:de:0030-drops-246356},
  doi =		{10.4230/LIPIcs.ITP.2025.37},
  annote =	{Keywords: Linear Temporal Logic, Interactive Theorem Proving, Lean 4}
}
Document
Control Improvisation

Authors: Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel

Published in: LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)


Abstract
We formalize and analyze a new automata-theoretic problem termed control improvisation. Given an automaton, the problem is to produce an improviser, a probabilistic algorithm that randomly generates words in its language, subject to two additional constraints: the satisfaction of an admissibility predicate, and the exhibition of a specified amount of randomness. Control improvisation has multiple applications, including, for example, generating musical improvisations that satisfy rhythmic and melodic constraints, where admissibility is determined by some bounded divergence from a reference melody. We analyze the complexity of the control improvisation problem, giving cases where it is efficiently solvable and cases where it is #P-hard or undecidable. We also show how symbolic techniques based on Boolean satisfiability (SAT) solvers can be used to approximately solve some of the intractable cases.

Cite as

Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. Control Improvisation. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 463-474, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{fremont_et_al:LIPIcs.FSTTCS.2015.463,
  author =	{Fremont, Daniel J. and Donz\'{e}, Alexandre and Seshia, Sanjit A. and Wessel, David},
  title =	{{Control Improvisation}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{463--474},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Harsha, Prahladh and Ramalingam, G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.463},
  URN =		{urn:nbn:de:0030-drops-56596},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.463},
  annote =	{Keywords: finite automata, random sampling, Boolean satisfiability, testing, computational music, control theory}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail