Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1
Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@Article{vemparala_et_al:LITES.8.1.3, author = {Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter}, title = {{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}}, journal = {Leibniz Transactions on Embedded Systems}, pages = {03:1--03:30}, ISSN = {2199-2002}, year = {2022}, volume = {8}, number = {1}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3}, doi = {10.4230/LITES.8.1.3}, annote = {Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning} }
Feedback for Dagstuhl Publishing