Search Results

Documents authored by Froleyks, Nils


Document
Clausal Congruence Closure

Authors: Armin Biere, Katalin Fazekas, Mathias Fleury, and Nils Froleyks

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Many practical applications of satisfiability solving employ multiple steps to encode an original problem formulation into conjunctive normal form. Often circuits are used as intermediate representation before encoding those circuits into clausal form. These circuits however might contain redundant isomorphic sub-circuits. If blindly translated into clausal form, this redundancy is retained and increases solving time unless specific preprocessing algorithms are used. Furthermore, such redundant sub-formula structure might only emerge during solving and needs to be addressed by inprocessing. This paper presents a new approach which extracts gate information from the formula and applies congruence closure to match and eliminate redundant gates. Besides new algorithms for gate extraction, we also describe previous unpublished attempts to tackle this problem. Experiments focus on the important problem of combinational equivalence checking for hardware designs and show that our new approach yields a substantial gain in CNF solver performance.

Cite as

Armin Biere, Katalin Fazekas, Mathias Fleury, and Nils Froleyks. Clausal Congruence Closure. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 6:1-6:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biere_et_al:LIPIcs.SAT.2024.6,
  author =	{Biere, Armin and Fazekas, Katalin and Fleury, Mathias and Froleyks, Nils},
  title =	{{Clausal Congruence Closure}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{6:1--6:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.6},
  URN =		{urn:nbn:de:0030-drops-205287},
  doi =		{10.4230/LIPIcs.SAT.2024.6},
  annote =	{Keywords: Satisfiability Solving, Congruence Closure, Structural Hashing, SAT Sweeping, Conjunctive Normal Form, Combinational Equivalence Checking, Hardware Equivalence Checking}
}
Document
CadiBack: Extracting Backbones with CaDiCaL

Authors: Armin Biere, Nils Froleyks, and Wenxi Wang

Published in: LIPIcs, Volume 271, 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)


Abstract
The backbone of a satisfiable formula is the set of literals that are true in all its satisfying assignments. Backbone computation can improve a wide range of SAT-based applications, such as verification, fault localization and product configuration. In this tool paper, we introduce a new backbone extraction tool called CadiBack. It takes advantage of unique features available in our state-of-the-art SAT solver CaDiCaL including transparent inprocessing and single clause assumptions, which have not been evaluated in this context before. In addition, CaDiCaL is enhanced with an improved algorithm to support model rotation by utilizing watched literal data structures. In our comprehensive experiments with a large number of benchmarks, CadiBack solves 60% more instances than the state-of-the-art backbone extraction tool MiniBones. Our tool is thoroughly tested with fuzzing, internal correctness checking and cross-checking on a large benchmark set. It is publicly available as open source, well documented and easy to extend.

Cite as

Armin Biere, Nils Froleyks, and Wenxi Wang. CadiBack: Extracting Backbones with CaDiCaL. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 271, pp. 3:1-3:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{biere_et_al:LIPIcs.SAT.2023.3,
  author =	{Biere, Armin and Froleyks, Nils and Wang, Wenxi},
  title =	{{CadiBack: Extracting Backbones with CaDiCaL}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{3:1--3:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.3},
  URN =		{urn:nbn:de:0030-drops-184655},
  doi =		{10.4230/LIPIcs.SAT.2023.3},
  annote =	{Keywords: Satisfiability, Backbone, Incremental Solving}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail