Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

For any relation f subseteq {0,1}^n x S and any partial Boolean function g:{0,1}^m -> {0,1,*}, we show that R_{1/3}(f o g^n) in Omega(R_{4/9}(f) * sqrt{R_{1/3}(g)}) , where R_epsilon(*) stands for the bounded-error randomized query complexity with error at most epsilon, and f o g^n subseteq ({0,1}^m)^n x S denotes the composition of f with n instances of g.
The new composition theorem is optimal, at least, for the general case of relational problems: A relation f_0 and a partial Boolean function g_0 are constructed, such that R_{4/9}(f_0) in Theta(sqrt n), R_{1/3}(g_0)in Theta(n) and R_{1/3}(f_0 o g_0^n) in Theta(n).
The theorem is proved via introducing a new complexity measure, max-conflict complexity, denoted by bar{chi}(*). Its investigation shows that bar{chi}(g) in Omega(sqrt{R_{1/3}(g)}) for any partial Boolean function g and R_{1/3}(f o g^n) in Omega(R_{4/9}(f) * bar{chi}(g)) for any relation f, which readily implies the composition statement. It is further shown that bar{chi}(g) is always at least as large as the sabotage complexity of g.

Dmitry Gavinsky, Troy Lee, Miklos Santha, and Swagato Sanyal. A Composition Theorem for Randomized Query Complexity via Max-Conflict Complexity. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 64:1-64:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{gavinsky_et_al:LIPIcs.ICALP.2019.64, author = {Gavinsky, Dmitry and Lee, Troy and Santha, Miklos and Sanyal, Swagato}, title = {{A Composition Theorem for Randomized Query Complexity via Max-Conflict Complexity}}, booktitle = {46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)}, pages = {64:1--64:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-109-2}, ISSN = {1868-8969}, year = {2019}, volume = {132}, editor = {Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.64}, URN = {urn:nbn:de:0030-drops-106407}, doi = {10.4230/LIPIcs.ICALP.2019.64}, annote = {Keywords: query complexity, lower bounds} }

Document

**Published in:** LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)

Let the randomized query complexity of a relation for error probability epsilon be denoted by R_epsilon(). We prove that for any relation f contained in {0,1}^n times R and Boolean function g:{0,1}^m -> {0,1}, R_{1/3}(f o g^n) = Omega(R_{4/9}(f).R_{1/2-1/n^4}(g)), where f o g^n is the relation obtained by composing f and g. We also show using an XOR lemma that R_{1/3}(f o (g^{xor}_{O(log n)})^n) = Omega(log n . R_{4/9}(f) . R_{1/3}(g))$, where g^{xor}_{O(log n)} is the function obtained by composing the XOR function on O(log n) bits and g.

Anurag Anshu, Dmitry Gavinsky, Rahul Jain, Srijita Kundu, Troy Lee, Priyanka Mukhopadhyay, Miklos Santha, and Swagato Sanyal. A Composition Theorem for Randomized Query Complexity. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.FSTTCS.2017.10, author = {Anshu, Anurag and Gavinsky, Dmitry and Jain, Rahul and Kundu, Srijita and Lee, Troy and Mukhopadhyay, Priyanka and Santha, Miklos and Sanyal, Swagato}, title = {{A Composition Theorem for Randomized Query Complexity}}, booktitle = {37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)}, pages = {10:1--10:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-055-2}, ISSN = {1868-8969}, year = {2018}, volume = {93}, editor = {Lokam, Satya and Ramanujam, R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.10}, URN = {urn:nbn:de:0030-drops-83967}, doi = {10.4230/LIPIcs.FSTTCS.2017.10}, annote = {Keywords: Query algorithms and complexity, Decision trees, Composition theorem, XOR lemma, Hardness amplification} }

Document

**Published in:** LIPIcs, Volume 40, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)

We study the effect that the amount of correlation in a bipartite distribution has on the communication complexity of a problem under that distribution. We introduce a new family of complexity measures that interpolates between the two previously studied extreme cases: the (standard) randomised communication complexity and the case of distributional complexity under product distributions.
- We give a tight characterisation of the randomised complexity of Disjointness under distributions with mutual information k, showing that it is Theta(sqrt(n(k+1))) for all 0 <= k <= n. This smoothly interpolates between the lower bounds of Babai, Frankl and Simon for the product distribution case (k=0), and the bound of Razborov for the randomised case. The upper bounds improve and generalise what was known for product distributions, and imply that any tight bound for Disjointness needs Omega(n) bits of mutual information in the corresponding distribution.
- We study the same question in the distributional quantum setting, and show a lower bound of Omega((n(k+1))^{1/4}), and an upper bound (via constructing communication protocols), matching up to a logarithmic factor.
- We show that there are total Boolean functions f_d that have distributional communication complexity O(log(n)) under all distributions of information up to o(n), while the (interactive) distributional complexity maximised over all distributions is Theta(log(d)) for n <= d <= 2^{n/100}. This shows, in particular, that the correlation needed to show that a problem is hard can be much larger than the communication complexity of the problem.
- We show that in the setting of one-way communication under product distributions, the dependence of communication cost on the allowed error epsilon is multiplicative in log(1/epsilon) - the previous upper bounds had the dependence of more than 1/epsilon. This result, for the first time, explains how one-way communication complexity under product distributions is stronger than PAC-learning: both tasks are characterised by the VC-dimension, but have very different error dependence (learning from examples, it costs more to reduce the error).

Ralph Christian Bottesch, Dmitry Gavinsky, and Hartmut Klauck. Correlation in Hard Distributions in Communication Complexity. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 40, pp. 544-572, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{bottesch_et_al:LIPIcs.APPROX-RANDOM.2015.544, author = {Bottesch, Ralph Christian and Gavinsky, Dmitry and Klauck, Hartmut}, title = {{Correlation in Hard Distributions in Communication Complexity}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015)}, pages = {544--572}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-89-7}, ISSN = {1868-8969}, year = {2015}, volume = {40}, editor = {Garg, Naveen and Jansen, Klaus and Rao, Anup and Rolim, Jos\'{e} D. P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2015.544}, URN = {urn:nbn:de:0030-drops-53234}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2015.544}, annote = {Keywords: communication complexity; information theory} }

Document

**Published in:** LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)

We introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any pair of sufficiently large sets is close to the expected number, we consider partitions and require this condition only for most of the pairs of blocks. As a result, the blocks can be substantially smaller.
We show that for some range of parameters, to be a partition expander a random graph needs exponentially smaller degree than any expander would require in order to achieve similar expanding properties.
We apply the concept of partition expanders in communication complexity. First, we give a PRG for the SMP model of the optimal seed length, n+O(log(k)). Second, we compare the model of SMP to that of Simultaneous Two-Way Communication, and give a new separation that is stronger both qualitatively and quantitatively than the previously known ones.

Dmitry Gavinsky and Pavel Pudlák. Partition Expanders. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 325-336, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)

Copy BibTex To Clipboard

@InProceedings{gavinsky_et_al:LIPIcs.STACS.2014.325, author = {Gavinsky, Dmitry and Pudl\'{a}k, Pavel}, title = {{Partition Expanders}}, booktitle = {31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)}, pages = {325--336}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-65-1}, ISSN = {1868-8969}, year = {2014}, volume = {25}, editor = {Mayr, Ernst W. and Portier, Natacha}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.325}, URN = {urn:nbn:de:0030-drops-44684}, doi = {10.4230/LIPIcs.STACS.2014.325}, annote = {Keywords: partitions, expanders, communication, complexity} }