Search Results

Documents authored by Ghurye, Jay


Document
A Succinct Four Russians Speedup for Edit Distance Computation and One-against-many Banded Alignment

Authors: Brian Brubach and Jay Ghurye

Published in: LIPIcs, Volume 105, 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)


Abstract
The classical Four Russians speedup for computing edit distance (a.k.a. Levenshtein distance), due to Masek and Paterson [Masek and Paterson, 1980], involves partitioning the dynamic programming table into k-by-k square blocks and generating a lookup table in O(psi^{2k} k^2 |Sigma|^{2k}) time and O(psi^{2k} k |Sigma|^{2k}) space for block size k, where psi depends on the cost function (for unit costs psi = 3) and |Sigma| is the size of the alphabet. We show that the O(psi^{2k} k^2) and O(psi^{2k} k) factors can be improved to O(k^2 lg{k}) time and O(k^2) space. Thus, we improve the time and space complexity of that aspect compared to Masek and Paterson [Masek and Paterson, 1980] and remove the dependence on psi. We further show that for certain problems the O(|Sigma|^{2k}) factor can also be reduced. Using this technique, we show a new algorithm for the fundamental problem of one-against-many banded alignment. In particular, comparing one string of length m to n other strings of length m with maximum distance d can be performed in O(n m + m d^2 lg{d} + n d^3) time. When d is reasonably small, this approaches or meets the current best theoretic result of O(nm + n d^2) achieved by using the best known pairwise algorithm running in O(m + d^2) time [Myers, 1986][Ukkonen, 1985] while potentially being more practical. It also improves on the standard practical approach which requires O(n m d) time to iteratively run an O(md) time pairwise banded alignment algorithm. Regarding pairwise comparison, we extend the classic result of Masek and Paterson [Masek and Paterson, 1980] which computes the edit distance between two strings in O(m^2/log{m}) time to remove the dependence on psi even when edits have arbitrary costs from a penalty matrix. Crochemore, Landau, and Ziv-Ukelson [Crochemore, 2003] achieved a similar result, also allowing for unrestricted scoring matrices, but with variable-sized blocks. In practical applications of the Four Russians speedup wherein space efficiency is important and smaller block sizes k are used (notably k < |Sigma|), Kim, Na, Park, and Sim [Kim et al., 2016] showed how to remove the dependence on the alphabet size for the unit cost version, generating a lookup table in O(3^{2k} (2k)! k^2) time and O(3^{2k} (2k)! k) space. Combining their work with our result yields an improvement to O((2k)! k^2 lg{k}) time and O((2k)! k^2) space.

Cite as

Brian Brubach and Jay Ghurye. A Succinct Four Russians Speedup for Edit Distance Computation and One-against-many Banded Alignment. In 29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 105, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{brubach_et_al:LIPIcs.CPM.2018.13,
  author =	{Brubach, Brian and Ghurye, Jay},
  title =	{{A Succinct Four Russians Speedup for Edit Distance Computation and One-against-many Banded Alignment}},
  booktitle =	{29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-074-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{105},
  editor =	{Navarro, Gonzalo and Sankoff, David and Zhu, Binhai},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2018.13},
  URN =		{urn:nbn:de:0030-drops-86965},
  doi =		{10.4230/LIPIcs.CPM.2018.13},
  annote =	{Keywords: edit distance, banded alignment, one-against-many alignment, genomics, method of the Four Russians}
}
Document
Better Greedy Sequence Clustering with Fast Banded Alignment

Authors: Brian Brubach, Jay Ghurye, Mihai Pop, and Aravind Srinivasan

Published in: LIPIcs, Volume 88, 17th International Workshop on Algorithms in Bioinformatics (WABI 2017)


Abstract
Comparing a string to a large set of sequences is a key subroutine in greedy heuristics for clustering genomic data. Clustering 16S rRNA gene sequences into operational taxonomic units (OTUs) is a common method used in studying microbial communities. We present a new approach to greedy clustering using a trie-like data structure and Four Russians speedup. We evaluate the running time of our method in terms of the number of comparisons it makes during clustering and show in experimental results that the number of comparisons grows linearly with the size of the dataset as opposed to the quadratic running time of other methods. We compare the clusters output by our method to the popular greedy clustering tool UCLUST. We show that the clusters we generate can be both tighter and larger.

Cite as

Brian Brubach, Jay Ghurye, Mihai Pop, and Aravind Srinivasan. Better Greedy Sequence Clustering with Fast Banded Alignment. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 88, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{brubach_et_al:LIPIcs.WABI.2017.3,
  author =	{Brubach, Brian and Ghurye, Jay and Pop, Mihai and Srinivasan, Aravind},
  title =	{{Better Greedy Sequence Clustering with Fast Banded Alignment}},
  booktitle =	{17th International Workshop on Algorithms in Bioinformatics (WABI 2017)},
  pages =	{3:1--3:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-050-7},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{88},
  editor =	{Schwartz, Russell and Reinert, Knut},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2017.3},
  URN =		{urn:nbn:de:0030-drops-76425},
  doi =		{10.4230/LIPIcs.WABI.2017.3},
  annote =	{Keywords: Sequence Clustering, Metagenomics, String Algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail