Search Results

Documents authored by Gola, Ashish


Document
RANDOM
Matrix Multiplication Reductions

Authors: Ashish Gola, Igor Shinkar, and Harsimran Singh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper we study a worst case to average case reduction for the problem of matrix multiplication over finite fields. Suppose we have an efficient average case algorithm, that given two random matrices A,B outputs a matrix that has a non-trivial correlation with their product A ⋅ B. Can we transform it into a worst case algorithm, that outputs the correct answer for all inputs without incurring a significant overhead in the running time? We present two results in this direction. - Two-sided error in the high agreement regime. We begin with a brief remark about a reduction for high agreement algorithms, i.e., an algorithm which agrees with the correct output on a large (say > 0.9) fraction of entries, and show that the standard self-correction of linearity allows us to transform such algorithms into algorithms that work in worst case. - One-sided error in the low agreement regime. Focusing on average case algorithms with one-sided error, we show that over 𝔽₂ there is a reduction that gets an O(T) time average case algorithm that given a random input A,B outputs a matrix that agrees with A ⋅ B on at least 51% of the entries (i.e., has only a slight advantage over the trivial algorithm), and transforms it into an Õ(T) time worst case algorithm, that outputs the correct answer for all inputs with high probability.

Cite as

Ashish Gola, Igor Shinkar, and Harsimran Singh. Matrix Multiplication Reductions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gola_et_al:LIPIcs.APPROX/RANDOM.2024.34,
  author =	{Gola, Ashish and Shinkar, Igor and Singh, Harsimran},
  title =	{{Matrix Multiplication Reductions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.34},
  URN =		{urn:nbn:de:0030-drops-210274},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.34},
  annote =	{Keywords: Matrix Multiplication, Reductions, Worst case to average case reductions}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail