Document

**Published in:** LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

Multicalibration is a notion of fairness for predictors that requires them to provide calibrated predictions across a large set of protected groups. Multicalibration is known to be a distinct goal than loss minimization, even for simple predictors such as linear functions.
In this work, we consider the setting where the protected groups can be represented by neural networks of size k, and the predictors are neural networks of size n > k. We show that minimizing the squared loss over all neural nets of size n implies multicalibration for all but a bounded number of unlucky values of n. We also give evidence that our bound on the number of unlucky values is tight, given our proof technique. Previously, results of the flavor that loss minimization yields multicalibration were known only for predictors that were near the ground truth, hence were rather limited in applicability. Unlike these, our results rely on the expressivity of neural nets and utilize the representation of the predictor.

Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, Adam Tauman Kalai, and Preetum Nakkiran. Loss Minimization Yields Multicalibration for Large Neural Networks. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{blasiok_et_al:LIPIcs.ITCS.2024.17, author = {B{\l}asiok, Jaros{\l}aw and Gopalan, Parikshit and Hu, Lunjia and Kalai, Adam Tauman and Nakkiran, Preetum}, title = {{Loss Minimization Yields Multicalibration for Large Neural Networks}}, booktitle = {15th Innovations in Theoretical Computer Science Conference (ITCS 2024)}, pages = {17:1--17:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-309-6}, ISSN = {1868-8969}, year = {2024}, volume = {287}, editor = {Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.17}, URN = {urn:nbn:de:0030-drops-195452}, doi = {10.4230/LIPIcs.ITCS.2024.17}, annote = {Keywords: Multi-group fairness, loss minimization, neural networks} }

Document

**Published in:** LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)

We present a new perspective on loss minimization and the recent notion of Omniprediction through the lens of Outcome Indistingusihability. For a collection of losses and hypothesis class, omniprediction requires that a predictor provide a loss-minimization guarantee simultaneously for every loss in the collection compared to the best (loss-specific) hypothesis in the class. We present a generic template to learn predictors satisfying a guarantee we call Loss Outcome Indistinguishability. For a set of statistical tests - based on a collection of losses and hypothesis class - a predictor is Loss OI if it is indistinguishable (according to the tests) from Nature’s true probabilities over outcomes. By design, Loss OI implies omniprediction in a direct and intuitive manner. We simplify Loss OI further, decomposing it into a calibration condition plus multiaccuracy for a class of functions derived from the loss and hypothesis classes. By careful analysis of this class, we give efficient constructions of omnipredictors for interesting classes of loss functions, including non-convex losses.
This decomposition highlights the utility of a new multi-group fairness notion that we call calibrated multiaccuracy, which lies in between multiaccuracy and multicalibration. We show that calibrated multiaccuracy implies Loss OI for the important set of convex losses arising from Generalized Linear Models, without requiring full multicalibration. For such losses, we show an equivalence between our computational notion of Loss OI and a geometric notion of indistinguishability, formulated as Pythagorean theorems in the associated Bregman divergence. We give an efficient algorithm for calibrated multiaccuracy with computational complexity comparable to that of multiaccuracy. In all, calibrated multiaccuracy offers an interesting tradeoff point between efficiency and generality in the omniprediction landscape.

Parikshit Gopalan, Lunjia Hu, Michael P. Kim, Omer Reingold, and Udi Wieder. Loss Minimization Through the Lens Of Outcome Indistinguishability. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 60:1-60:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2023.60, author = {Gopalan, Parikshit and Hu, Lunjia and Kim, Michael P. and Reingold, Omer and Wieder, Udi}, title = {{Loss Minimization Through the Lens Of Outcome Indistinguishability}}, booktitle = {14th Innovations in Theoretical Computer Science Conference (ITCS 2023)}, pages = {60:1--60:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-263-1}, ISSN = {1868-8969}, year = {2023}, volume = {251}, editor = {Tauman Kalai, Yael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.60}, URN = {urn:nbn:de:0030-drops-175635}, doi = {10.4230/LIPIcs.ITCS.2023.60}, annote = {Keywords: Loss Minimization, Indistinguishability} }

Document

**Published in:** LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)

Loss minimization is a dominant paradigm in machine learning, where a predictor is trained to minimize some loss function that depends on an uncertain event (e.g., "will it rain tomorrow?"). Different loss functions imply different learning algorithms and, at times, very different predictors. While widespread and appealing, a clear drawback of this approach is that the loss function may not be known at the time of learning, requiring the algorithm to use a best-guess loss function. Alternatively, the same classifier may be used to inform multiple decisions, which correspond to multiple loss functions, requiring multiple learning algorithms to be run on the same data. We suggest a rigorous new paradigm for loss minimization in machine learning where the loss function can be ignored at the time of learning and only be taken into account when deciding an action.
We introduce the notion of an (L,𝒞)-omnipredictor, which could be used to optimize any loss in a family L. Once the loss function is set, the outputs of the predictor can be post-processed (a simple univariate data-independent transformation of individual predictions) to do well compared with any hypothesis from the class C. The post processing is essentially what one would perform if the outputs of the predictor were true probabilities of the uncertain events. In a sense, omnipredictors extract all the predictive power from the class 𝒞, irrespective of the loss function in L.
We show that such "loss-oblivious" learning is feasible through a connection to multicalibration, a notion introduced in the context of algorithmic fairness. A multicalibrated predictor doesn’t aim to minimize some loss function, but rather to make calibrated predictions, even when conditioned on inputs lying in certain sets c belonging to a family 𝒞 which is weakly learnable. We show that a 𝒞-multicalibrated predictor is also an (L,𝒞)-omnipredictor, where L contains all convex loss functions with some mild Lipschitz conditions. The predictors are even omnipredictors with respect to sparse linear combinations of functions in 𝒞. As a corollary, we deduce that distribution-specific weak agnostic learning is complete for a large class of loss minimization tasks.
In addition, we show how multicalibration can be viewed as a solution concept for agnostic boosting, shedding new light on past results. Finally, we transfer our insights back to the context of algorithmic fairness by providing omnipredictors for multi-group loss minimization.

Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder. Omnipredictors. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 79:1-79:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2022.79, author = {Gopalan, Parikshit and Kalai, Adam Tauman and Reingold, Omer and Sharan, Vatsal and Wieder, Udi}, title = {{Omnipredictors}}, booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)}, pages = {79:1--79:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-217-4}, ISSN = {1868-8969}, year = {2022}, volume = {215}, editor = {Braverman, Mark}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.79}, URN = {urn:nbn:de:0030-drops-156755}, doi = {10.4230/LIPIcs.ITCS.2022.79}, annote = {Keywords: Loss-minimzation, multi-group fairness, agnostic learning, boosting} }

Document

**Published in:** LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)

Say that we are given samples from a distribution ψ over an n-dimensional space. We expect or desire ψ to behave like a product distribution (or a k-wise independent distribution over its marginals for small k). We propose the problem of enumerating/list-decoding all large subcubes where the distribution ψ deviates markedly from what we expect; we refer to such subcubes as skewed subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in ψ. We motivate this problem by showing that it arises naturally in the context of algorithmic fairness and anomaly detection.
In this work we focus on the special but important case where the space is the Boolean hypercube, and the expected marginals are uniform. We show that the obvious definition of skewed subcubes can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main technical contribution is a list-size bound for this definition and an algorithm to efficiently find all such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially the powerful hypercontractive inequality.
On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse noisy parity problem, and hence our algorithms cannot be improved on substantially without a breakthrough on this problem which is believed to be intractable. Motivated by this, we study alternate models allowing query access to ψ where finding skewed subcubes might be easier.

Parikshit Gopalan, Roie Levin, and Udi Wieder. Finding Skewed Subcubes Under a Distribution. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 84:1-84:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.ITCS.2020.84, author = {Gopalan, Parikshit and Levin, Roie and Wieder, Udi}, title = {{Finding Skewed Subcubes Under a Distribution}}, booktitle = {11th Innovations in Theoretical Computer Science Conference (ITCS 2020)}, pages = {84:1--84:30}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-134-4}, ISSN = {1868-8969}, year = {2020}, volume = {151}, editor = {Vidick, Thomas}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.84}, URN = {urn:nbn:de:0030-drops-117691}, doi = {10.4230/LIPIcs.ITCS.2020.84}, annote = {Keywords: Fourier Analysis, Anomaly Detection, Algorithmic Fairness, Probability, Unsupervised Learning} }

Document

**Published in:** LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)

The sensitivity of a Boolean function f is the maximum, over all inputs x, of the number of sensitive coordinates of x (namely the number of Hamming neighbors of x with different f-value). The well-known sensitivity conjecture of Nisan (see also Nisan and Szegedy) states that every sensitivity-s Boolean function can be computed by a polynomial over the reals of degree s^{O(1)}. The best known upper bounds on degree, however, are exponential rather than polynomial in s.
Our main result is an approximate version of the conjecture: every Boolean function with sensitivity s can be eps-approximated (in l_2) by a polynomial whose degree is s * polylog(1/eps). This is the first improvement on the folklore bound of s/eps. We prove this via a new "switching lemma for low-sensitivity functions" which establishes that a random restriction of a low-sensitivity function is very likely to have low decision tree depth. This is analogous to the well-known switching lemma for AC^0 circuits.
Our proof analyzes the combinatorial structure of the graph G_f of sensitive edges of a Boolean function f. Understanding the structure of this graph is of independent interest as a means of understanding Boolean functions. We propose several new complexity measures for Boolean functions based on this graph, including tree sensitivity and component dimension, which may be viewed as relaxations of worst-case sensitivity, and we introduce some new techniques, such as proper walks and shifting, to analyze these measures. We use these notions to show that the graph of a function of full degree must be sufficiently complex, and that random restrictions of low-sensitivity functions are unlikely to lead to such complex graphs.
We postulate a robust analogue of the sensitivity conjecture: if most inputs to a Boolean function f have low sensitivity, then most of the Fourier mass of f is concentrated on small subsets. We prove a lower bound on tree sensitivity in terms of decision tree depth, and show that a polynomial strengthening of this lower bound implies the robust conjecture. We feel that studying the graph G_f is interesting in its own right, and we hope that some of the notions and techniques we introduce in this work will be of use in its further study.

Parikshit Gopalan, Rocco A. Servedio, and Avi Wigderson. Degree and Sensitivity: Tails of Two Distributions. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 13:1-13:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{gopalan_et_al:LIPIcs.CCC.2016.13, author = {Gopalan, Parikshit and Servedio, Rocco A. and Wigderson, Avi}, title = {{Degree and Sensitivity: Tails of Two Distributions}}, booktitle = {31st Conference on Computational Complexity (CCC 2016)}, pages = {13:1--13:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-008-8}, ISSN = {1868-8969}, year = {2016}, volume = {50}, editor = {Raz, Ran}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.13}, URN = {urn:nbn:de:0030-drops-58488}, doi = {10.4230/LIPIcs.CCC.2016.13}, annote = {Keywords: Boolean functions, random restrictions, Fourier analysis} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail