Search Results

Documents authored by Gorbachev, Egor


Document
Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds

Authors: Itai Boneh, Egor Gorbachev, and Tomasz Kociumaka

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The edit distance ed(X,Y) of two strings X,Y ∈ Σ^* is the minimum number of character edits (insertions, deletions, and substitutions) needed to transform X into Y. Its weighted counterpart ed^w(X,Y) minimizes the total cost of edits, where the costs of individual edits, depending on the edit type and the characters involved, are specified using a function w, normalized so that each edit costs at least one. The textbook dynamic-programming procedure, given strings X,Y ∈ Σ^{≤ n} and oracle access to w, computes ed^w(X,Y) in 𝒪(n²) time. Nevertheless, one can achieve better running times if the computed distance, denoted k, is small: 𝒪(n+k²) for unit weights [Landau and Vishkin; JCSS'88] and Õ(n+√{nk³}) for arbitrary weights [Cassis, Kociumaka, Wellnitz; FOCS'23]. In this paper, we study the dynamic version of the weighted edit distance problem, where the goal is to maintain ed^w(X,Y) for strings X,Y ∈ Σ^{≤ n} that change over time, with each update specified as an edit in X or Y. Very recently, Gorbachev and Kociumaka [STOC'25] showed that the unweighted distance ed(X,Y) can be maintained in Õ(k) time per update after Õ(n+k²)-time preprocessing; here, k denotes the current value of ed(X,Y). Their algorithm generalizes to small integer weights, but the underlying approach is incompatible with large weights. Our main result is a dynamic algorithm that maintains ed^w(X,Y) in Õ(k^{3-γ}) time per update after Õ(nk^γ)-time preprocessing. Here, γ ∈ [0,1] is a real trade-off parameter and k ≥ 1 is an integer threshold fixed at preprocessing time, with ∞ returned whenever ed^w(X,Y) > k. We complement our algorithm with conditional lower bounds showing fine-grained optimality of our trade-off for γ ∈ [0.5,1) and justifying our choice to fix k. We also generalize our solution to a much more robust setting while preserving the fine-grained optimal trade-off. Our full algorithm maintains X ∈ Σ^{≤ n} subject not only to character edits but also substring deletions and copy-pastes, each supported in Õ(k²) time. Instead of dynamically maintaining Y, it answers queries that, given any string Y specified through a sequence of 𝒪(k) arbitrary edits transforming X into Y, in Õ(k^{3-γ}) time compute ed^w(X,Y) or report that ed^w(X,Y) > k.

Cite as

Itai Boneh, Egor Gorbachev, and Tomasz Kociumaka. Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{boneh_et_al:LIPIcs.ESA.2025.45,
  author =	{Boneh, Itai and Gorbachev, Egor and Kociumaka, Tomasz},
  title =	{{Bounded Weighted Edit Distance: Dynamic Algorithms and Matching Lower Bounds}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.45},
  URN =		{urn:nbn:de:0030-drops-245139},
  doi =		{10.4230/LIPIcs.ESA.2025.45},
  annote =	{Keywords: Edit distance, dynamic algorithms, conditional lower bounds}
}
Document
Core-Sparse Monge Matrix Multiplication: Improved Algorithm and Applications

Authors: Paweł Gawrychowski, Egor Gorbachev, and Tomasz Kociumaka

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Min-plus matrix multiplication is a fundamental tool for designing algorithms operating on distances in graphs and different problems solvable by dynamic programming. We know that, assuming the APSP hypothesis, no subcubic-time algorithm exists for the case of general matrices. However, in many applications the matrices admit certain structural properties that can be used to design faster algorithms. For example, when considering a planar graph, one often works with a Monge matrix A, meaning that the density matrix A^◻ has non-negative entries, that is, A^◻_{i,j} := A_{i+1,j} + A_{i,j+1} - A_{i,j} -A_{i+1,j+1} ≥ 0. The min-plus product of two n×n Monge matrices can be computed in 𝒪(n²) time using the famous SMAWK algorithm. In applications such as longest common subsequence, edit distance, and longest increasing subsequence, the matrices are even more structured, as observed by Tiskin [J. Discrete Algorithms, 2008]: they are (or can be converted to) simple unit-Monge matrices, meaning that the density matrix is a permutation matrix and, furthermore, the first column and the last row of the matrix consist of only zeroes. Such matrices admit an implicit representation of size 𝒪(n) and, as shown by Tiskin [SODA 2010 & Algorithmica, 2015], their min-plus product can be computed in 𝒪(nlog n) time. Russo [SPIRE 2010 & Theor. Comput. Sci., 2012] identified a general structural property of matrices that admit such efficient representation and min-plus multiplication algorithms: the core size δ, defined as the number of non-zero entries in the density matrices of the input and output matrices. He provided an adaptive implementation of the SMAWK algorithm that runs in 𝒪((n+δ)log³ n) or 𝒪((n+δ)log² n) time (depending on the representation of the input matrices). In this work, we further investigate the core size as the parameter that enables efficient min-plus matrix multiplication. On the combinatorial side, we provide a (linear) bound on the core size of the product matrix in terms of the core sizes of the input matrices. On the algorithmic side, we generalize Tiskin’s algorithm (but, arguably, with a more elementary analysis) to solve the core-sparse Monge matrix multiplication problem in 𝒪(n+δlog δ) ⊆ 𝒪(n + δ log n) time, matching the complexity for simple unit-Monge matrices. As witnessed by the recent work of Gorbachev and Kociumaka [STOC'25] for edit distance with integer weights, our generalization opens up the possibility of speed-ups for weighted sequence alignment problems. Furthermore, our multiplication algorithm is also capable of producing an efficient data structure for recovering the witness for any given entry of the output matrix. This allows us, for example, to preprocess an integer array of size n in Õ(n) time so that the longest increasing subsequence of any sub-array can be reconstructed in Õ(𝓁) time, where 𝓁 is the length of the reported subsequence. In comparison, Karthik C. S. and Rahul [arXiv, 2024] recently achieved 𝒪(𝓁+n^{1/2}polylog n)-time reporting after 𝒪(n^{3/2}polylog n)-time preprocessing.

Cite as

Paweł Gawrychowski, Egor Gorbachev, and Tomasz Kociumaka. Core-Sparse Monge Matrix Multiplication: Improved Algorithm and Applications. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 74:1-74:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gawrychowski_et_al:LIPIcs.ESA.2025.74,
  author =	{Gawrychowski, Pawe{\l} and Gorbachev, Egor and Kociumaka, Tomasz},
  title =	{{Core-Sparse Monge Matrix Multiplication: Improved Algorithm and Applications}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{74:1--74:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.74},
  URN =		{urn:nbn:de:0030-drops-245427},
  doi =		{10.4230/LIPIcs.ESA.2025.74},
  annote =	{Keywords: Min-plus matrix multiplication, Monge matrix, longest increasing subsequence}
}
Document
Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee’s Measure Problem and Related Problems in Dimensions d ≥ 4

Authors: Egor Gorbachev and Marvin Künnemann

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Klee’s measure problem (computing the volume of the union of n axis-parallel boxes in ℝ^d) is well known to have n^{d/2± o(1)}-time algorithms (Overmars, Yap, SICOMP'91; Chan FOCS'13). Only recently, a conditional lower bound (without any restriction to "combinatorial" algorithms) could be shown for d = 3 (Künnemann, FOCS'22). Can this result be extended to a tight lower bound for dimensions d ≥ 4? In this paper, we formalize the technique of the tight lower bound for d = 3 using a combinatorial object we call prefix covering design. We show that these designs, which are related in spirit to combinatorial designs, directly translate to conditional lower bounds for Klee’s measure problem and various related problems. By devising good prefix covering designs, we give the following lower bounds for Klee’s measure problem in ℝ^d, the depth problem for axis-parallel boxes in ℝ^d, the largest-volume/max-perimeter empty (anchored) box problem in ℝ^{2d}, and related problems: - Ω(n^1.90476) for d = 4, - Ω(n^2.22222) for d = 5, - Ω(n^{d/3 + 2√d/9-o(√d)}) for general d, assuming the 3-uniform hyperclique hypothesis. For Klee’s measure problem and the depth problem, these bounds improve previous lower bounds of Ω(n^{1.777...}), Ω(n^{2.0833...}) and Ω(n^{d/3 + 1/3 + Θ(1/d)}) respectively. Our improved prefix covering designs were obtained by (1) exploiting a computer-aided search using problem-specific insights as well as SAT solvers, and (2) showing how to transform combinatorial covering designs known in the literature to strong prefix covering designs. In contrast, we show that our lower bounds are close to best possible using this proof technique.

Cite as

Egor Gorbachev and Marvin Künnemann. Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee’s Measure Problem and Related Problems in Dimensions d ≥ 4. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gorbachev_et_al:LIPIcs.SoCG.2023.36,
  author =	{Gorbachev, Egor and K\"{u}nnemann, Marvin},
  title =	{{Combinatorial Designs Meet Hypercliques: Higher Lower Bounds for Klee’s Measure Problem and Related Problems in Dimensions d ≥ 4}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.36},
  URN =		{urn:nbn:de:0030-drops-178861},
  doi =		{10.4230/LIPIcs.SoCG.2023.36},
  annote =	{Keywords: Fine-grained complexity theory, non-combinatorial lower bounds, computational geometry, clique detection}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail