Search Results

Documents authored by Graça, Daniel S.


Document
Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations

Authors: Olivier Bournez, Daniel S. Graça, and Amaury Pouly

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
The outcomes of this paper are twofold. Implicit complexity. We provide an implicit characterization of polynomial time computation in terms of ordinary differential equations: we characterize the class P of languages computable in polynomial time in terms of differential equations with polynomial right-hand side. This result gives a purely continuous (time and space) elegant and simple characterization of P. We believe it is the first time such classes are characterized using only ordinary differential equations. Our characterization extends to functions computable in polynomial time over the reals in the sense of computable analysis. Our results may provide a new perspective on classical complexity, by giving a way to define complexity classes, like P, in a very simple way, without any reference to a notion of (discrete) machine. This may also provide ways to state classical questions about computational complexity via ordinary differential equations. Continuous-Time Models of Computation. Our results can also be interpreted in terms of analog computers or analog model of computation: As a side effect, we get that the 1941 General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing machines both at the computability and complexity level, a fact that has never been established before. This result provides arguments in favour of a generalised form of the Church-Turing Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to Turing machines both at a computability and at a computational complexity level.

Cite as

Olivier Bournez, Daniel S. Graça, and Amaury Pouly. Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 109:1-109:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bournez_et_al:LIPIcs.ICALP.2016.109,
  author =	{Bournez, Olivier and Gra\c{c}a, Daniel S. and Pouly, Amaury},
  title =	{{Polynomial Time Corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length: The General Purpose Analog Computer and Computable Analysis Are Two Efficiently Equivalent Models of Computations}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{109:1--109:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.109},
  URN =		{urn:nbn:de:0030-drops-62445},
  doi =		{10.4230/LIPIcs.ICALP.2016.109},
  annote =	{Keywords: Analog Models of Computation, Continuous-Time Models of Computation, Computable Analysis, Implicit Complexity, Computational Complexity, Ordinary Diff}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail