Search Results

Documents authored by Grafe, Vera


Document
Recoverable Robust Periodic Timetabling

Authors: Vera Grafe and Anita Schöbel

Published in: OASIcs, Volume 115, 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)


Abstract
We apply the concept of recoverable robustness to periodic timetabling, resulting in the Recoverable Robust Periodic Timetabling Problem (RRPT), which integrates periodic timetabling and delay management. Although the computed timetable is periodic, the model is able to take the aperiodicity of the delays into account. This is an important step in finding a good trade-off between short travel times and delay resistance. We present three equivalent formulations for this problem, differing in the way the timetabling subproblem is handled, and compare them in a first experimental study. We also show that our model yields solutions of high quality.

Cite as

Vera Grafe and Anita Schöbel. Recoverable Robust Periodic Timetabling. In 23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023). Open Access Series in Informatics (OASIcs), Volume 115, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{grafe_et_al:OASIcs.ATMOS.2023.9,
  author =	{Grafe, Vera and Sch\"{o}bel, Anita},
  title =	{{Recoverable Robust Periodic Timetabling}},
  booktitle =	{23rd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2023)},
  pages =	{9:1--9:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-302-7},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{115},
  editor =	{Frigioni, Daniele and Schiewe, Philine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2023.9},
  URN =		{urn:nbn:de:0030-drops-187708},
  doi =		{10.4230/OASIcs.ATMOS.2023.9},
  annote =	{Keywords: Public Transport, Recoverable Robustness, Periodic Timetabling, Delay Management, Mixed Integer Programming}
}
Document
Delay Management with Integrated Decisions on the Vehicle Circulations

Authors: Vera Grafe, Alexander Schiewe, and Anita Schöbel

Published in: OASIcs, Volume 106, 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)


Abstract
The task of delay management in public transport is to decide whether a vehicle should wait for a delayed vehicle in order to maintain the connection for transferring passengers. So far, the vehicle circulations are often ignored in the optimization process, although they have an influence on the propagation of the delay through the network. In this paper we consider different ways from literature to incorporate vehicle circulations in the delay management stage of public transport planning. Since the IP formulation for the integrated problem is hard to solve, we investigate bounds and develop several heuristics for the integrated problem. Our experiments on close-to real-world instances show that integrating delay management and decisions on vehicle circulations may reduce the overall delay by up to 39 percent. We also compare the runtimes and objective function values of the different heuristics. We conclude that we can find competitive solutions in a reasonable amount of time.

Cite as

Vera Grafe, Alexander Schiewe, and Anita Schöbel. Delay Management with Integrated Decisions on the Vehicle Circulations. In 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022). Open Access Series in Informatics (OASIcs), Volume 106, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{grafe_et_al:OASIcs.ATMOS.2022.7,
  author =	{Grafe, Vera and Schiewe, Alexander and Sch\"{o}bel, Anita},
  title =	{{Delay Management with Integrated Decisions on the Vehicle Circulations}},
  booktitle =	{22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)},
  pages =	{7:1--7:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-259-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{106},
  editor =	{D'Emidio, Mattia and Lindner, Niels},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2022.7},
  URN =		{urn:nbn:de:0030-drops-171119},
  doi =		{10.4230/OASIcs.ATMOS.2022.7},
  annote =	{Keywords: Public Transport, Delay Management, Vehicle Circulations, Integer Programming}
}
Document
Solving the Periodic Scheduling Problem: An Assignment Approach in Non-Periodic Networks

Authors: Vera Grafe and Anita Schöbel

Published in: OASIcs, Volume 96, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)


Abstract
The periodic event scheduling problem (PESP) is a well researched problem used for finding good periodic timetables in public transport. While it is based on a periodic network consisting of events and activities which are repeated every period, we propose a new periodic timetabling model using a non-periodic network. This is a first step towards the goal of integrating periodic timetabling with other planning steps taking place in the aperiodic network, e.g. passenger assignment or delay management. In this paper, we develop the new model, show how we can reduce its size and prove its equivalence to PESP. We also conduct computational experiments on close-to real-world data from Lower Saxony, a region in northern Germany, and see that the model can be solved in a reasonable amount of time.

Cite as

Vera Grafe and Anita Schöbel. Solving the Periodic Scheduling Problem: An Assignment Approach in Non-Periodic Networks. In 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021). Open Access Series in Informatics (OASIcs), Volume 96, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grafe_et_al:OASIcs.ATMOS.2021.9,
  author =	{Grafe, Vera and Sch\"{o}bel, Anita},
  title =	{{Solving the Periodic Scheduling Problem: An Assignment Approach in Non-Periodic Networks}},
  booktitle =	{21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021)},
  pages =	{9:1--9:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-213-6},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{96},
  editor =	{M\"{u}ller-Hannemann, Matthias and Perea, Federico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2021.9},
  URN =		{urn:nbn:de:0030-drops-148780},
  doi =		{10.4230/OASIcs.ATMOS.2021.9},
  annote =	{Keywords: Public Transport, Periodic Timetabling, PESP, Integer Programming}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail