Search Results

Documents authored by Grigoriev, Alexander


Document
Dispersing Obnoxious Facilities on a Graph

Authors: Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance delta from each other. We investigate the complexity of this problem in terms of the rational parameter delta. The problem is polynomially solvable, if the numerator of delta is 1 or 2, while all other cases turn out to be NP-hard.

Cite as

Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Dispersing Obnoxious Facilities on a Graph. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 33:1-33:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{grigoriev_et_al:LIPIcs.STACS.2019.33,
  author =	{Grigoriev, Alexander and Hartmann, Tim A. and Lendl, Stefan and Woeginger, Gerhard J.},
  title =	{{Dispersing Obnoxious Facilities on a Graph}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{33:1--33:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.33},
  URN =		{urn:nbn:de:0030-drops-102729},
  doi =		{10.4230/LIPIcs.STACS.2019.33},
  annote =	{Keywords: algorithms, complexity, optimization, graph theory, facility location}
}
Document
Combinatorial Properties and Recognition of Unit Square Visibility Graphs

Authors: Katrin Casel, Henning Fernau, Alexander Grigoriev, Markus L. Schmid, and Sue Whitesides

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel visibility between unit squares placed (on integer grid coordinates) in the plane. We investigate combinatorial properties of these graph classes and the hardness of variants of the recognition problem, i.e., the problem of representing USGV with fixed visibilities within small area and, for USV, the general recognition problem.

Cite as

Katrin Casel, Henning Fernau, Alexander Grigoriev, Markus L. Schmid, and Sue Whitesides. Combinatorial Properties and Recognition of Unit Square Visibility Graphs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{casel_et_al:LIPIcs.MFCS.2017.30,
  author =	{Casel, Katrin and Fernau, Henning and Grigoriev, Alexander and Schmid, Markus L. and Whitesides, Sue},
  title =	{{Combinatorial Properties and Recognition of Unit Square Visibility Graphs}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.30},
  URN =		{urn:nbn:de:0030-drops-80770},
  doi =		{10.4230/LIPIcs.MFCS.2017.30},
  annote =	{Keywords: Visibility graphs, visibility layout, NP-completeness, exact algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail