Search Results

Documents authored by Gu, Xiaoyang


Document
Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses

Authors: Xiaoyang Gu, John M. Hitchcock, and Aduri Pavan

Published in: LIPIcs, Volume 5, 27th International Symposium on Theoretical Aspects of Computer Science (2010)


Abstract
This paper presents the following results on sets that are complete for $\NP$. \begin{enumerate} \item If there is a problem in $\NP$ that requires $\twonO$ time at almost all lengths, then every many-one NP-complete set is complete under length-increasing reductions that are computed by polynomial-size circuits. \item If there is a problem in $\CoNP$ that cannot be solved by polynomial-size nondeterministic circuits, then every many-one complete set is complete under length-increasing reductions that are computed by polynomial-size circuits. \item If there exist a one-way permutation that is secure against subexponential-size circuits and there is a hard tally language in $\NP \cap \CoNP$, then there is a Turing complete language for $\NP$ that is not many-one complete. \end{enumerate} Our first two results use worst-case hardness hypotheses whereas earlier work that showed similar results relied on average-case or almost-everywhere hardness assumptions. The use of average-case and worst-case hypotheses in the last result is unique as previous results obtaining the same consequence relied on almost-everywhere hardness results.

Cite as

Xiaoyang Gu, John M. Hitchcock, and Aduri Pavan. Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses. In 27th International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 5, pp. 429-440, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{gu_et_al:LIPIcs.STACS.2010.2462,
  author =	{Gu, Xiaoyang and Hitchcock, John M. and Pavan, Aduri},
  title =	{{Collapsing and Separating Completeness Notions under Average-Case and Worst-Case Hypotheses}},
  booktitle =	{27th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{429--440},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-16-3},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{5},
  editor =	{Marion, Jean-Yves and Schwentick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2010.2462},
  URN =		{urn:nbn:de:0030-drops-24627},
  doi =		{10.4230/LIPIcs.STACS.2010.2462},
  annote =	{Keywords: Computational complexity, NP-completeness}
}
Document
Curves That Must Be Retraced

Authors: Xiaoyang Gu, Jack H. Lutz, and Elvira Mayordomo

Published in: OASIcs, Volume 11, 6th International Conference on Computability and Complexity in Analysis (CCA'09) (2009)


Abstract
We exhibit a polynomial time computable plane curve ${\bf \Gamma}$ that has finite length, does not intersect itself, and is smooth except at one endpoint, but has the following property. For every computable parametrization $f$ of ${\bf\Gamma}$ and every positive integer $m$, there is some positive-length subcurve of ${\bf\Gamma}$ that $f$ retraces at least $m$ times. In contrast, every computable curve of finite length that does not intersect itself has a constant-speed (hence non-retracing) parametrization that is computable relative to the halting problem.

Cite as

Xiaoyang Gu, Jack H. Lutz, and Elvira Mayordomo. Curves That Must Be Retraced. In 6th International Conference on Computability and Complexity in Analysis (CCA'09). Open Access Series in Informatics (OASIcs), Volume 11, pp. 149-160, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{gu_et_al:OASIcs.CCA.2009.2267,
  author =	{Gu, Xiaoyang and Lutz, Jack H. and Mayordomo, Elvira},
  title =	{{Curves That Must Be Retraced}},
  booktitle =	{6th International Conference on Computability and Complexity in Analysis (CCA'09)},
  pages =	{149--160},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-12-5},
  ISSN =	{2190-6807},
  year =	{2009},
  volume =	{11},
  editor =	{Bauer, Andrej and Hertling, Peter and Ko, Ker-I},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.CCA.2009.2267},
  URN =		{urn:nbn:de:0030-drops-22674},
  doi =		{10.4230/OASIcs.CCA.2009.2267},
  annote =	{Keywords: Computable analysis, computable curve, computational complexity, Hausdorff measure, rectifiable curve}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail