Search Results

Documents authored by Hansen, Helle Hvid


Document
Safety and Strong Completeness via Reducibility for Many-Valued Coalgebraic Dynamic Logics

Authors: Helle Hvid Hansen and Wolfgang Poiger

Published in: LIPIcs, Volume 342, 11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025)


Abstract
We present a coalgebraic framework for studying generalisations of dynamic modal logics such as PDL and game logic in which both the propositions and the semantic structures can take values in an algebra 𝐀 of truth-degrees. More precisely, we work with coalgebraic modal logic via 𝐀-valued predicate liftings where 𝐀 is an FLew-algebra, and interpret actions (abstracting programs and games) as 𝖥-coalgebras where the functor 𝖥 represents some type of 𝐀-weighted system. We also allow combinations of crisp propositions with 𝐀-weighted systems and vice versa. We introduce coalgebra operations and tests, with a focus on operations which are reducible in the sense that modalities for composed actions can be reduced to compositions of modalities for the constituent actions. We prove that reducible operations are safe for bisimulation and behavioural equivalence, and prove a general strong completeness result, from which we obtain new strong completeness results for 𝟐-valued iteration-free PDL with 𝐀-valued accessibility relations when 𝐀 is a finite chain, and for many-valued iteration-free game logic with many-valued strategies based on finite Lukasiewicz logic.

Cite as

Helle Hvid Hansen and Wolfgang Poiger. Safety and Strong Completeness via Reducibility for Many-Valued Coalgebraic Dynamic Logics. In 11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 342, pp. 9:1-9:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hansen_et_al:LIPIcs.CALCO.2025.9,
  author =	{Hansen, Helle Hvid and Poiger, Wolfgang},
  title =	{{Safety and Strong Completeness via Reducibility for Many-Valued Coalgebraic Dynamic Logics}},
  booktitle =	{11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025)},
  pages =	{9:1--9:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-383-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{342},
  editor =	{C\^{i}rstea, Corina and Knapp, Alexander},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2025.9},
  URN =		{urn:nbn:de:0030-drops-235681},
  doi =		{10.4230/LIPIcs.CALCO.2025.9},
  annote =	{Keywords: dynamic logic, many-valued coalgebraic logic, safety, strong completeness}
}
Document
A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

Authors: Jörg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra Silva

Published in: LIPIcs, Volume 36, 26th International Conference on Rewriting Techniques and Applications (RTA 2015)


Abstract
We present a coinductive framework for defining infinitary analogues of equational reasoning and rewriting in a uniform way. The setup captures rewrite sequences of arbitrary ordinal length, but it has neither the need for ordinals nor for metric convergence. This makes the framework especially suitable for formalizations in theorem provers.

Cite as

Jörg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra Silva. A Coinductive Framework for Infinitary Rewriting and Equational Reasoning. In 26th International Conference on Rewriting Techniques and Applications (RTA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 36, pp. 143-159, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{endrullis_et_al:LIPIcs.RTA.2015.143,
  author =	{Endrullis, J\"{o}rg and Hansen, Helle Hvid and Hendriks, Dimitri and Polonsky, Andrew and Silva, Alexandra},
  title =	{{A Coinductive Framework for Infinitary Rewriting and Equational Reasoning}},
  booktitle =	{26th International Conference on Rewriting Techniques and Applications (RTA 2015)},
  pages =	{143--159},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-85-9},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{36},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2015.143},
  URN =		{urn:nbn:de:0030-drops-51949},
  doi =		{10.4230/LIPIcs.RTA.2015.143},
  annote =	{Keywords: infinitary rewriting, coinduction}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail