Published in: Dagstuhl Reports, Volume 5, Issue 8 (2016)
Matthias Hein, Gabor Lugosi, and Lorenzo Rosasco. Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 15361). In Dagstuhl Reports, Volume 5, Issue 8, pp. 54-73, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@Article{hein_et_al:DagRep.5.8.54,
author = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo},
title = {{Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 15361)}},
pages = {54--73},
journal = {Dagstuhl Reports},
ISSN = {2192-5283},
year = {2016},
volume = {5},
number = {8},
editor = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.5.8.54},
URN = {urn:nbn:de:0030-drops-56783},
doi = {10.4230/DagRep.5.8.54},
annote = {Keywords: learning theory, non-smooth optimization (convex and non-convex), signal processing}
}
Published in: Dagstuhl Reports, Volume 1, Issue 7 (2011)
Matthias Hein, Gabor Lugosi, Lorenzo Rosasco, and Steve Smale. Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 11291). In Dagstuhl Reports, Volume 1, Issue 7, pp. 53-69, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)
@Article{hein_et_al:DagRep.1.7.53,
author = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo and Smale, Steve},
title = {{Mathematical and Computational Foundations of Learning Theory (Dagstuhl Seminar 11291)}},
pages = {53--69},
journal = {Dagstuhl Reports},
ISSN = {2192-5283},
year = {2011},
volume = {1},
number = {7},
editor = {Hein, Matthias and Lugosi, Gabor and Rosasco, Lorenzo and Smale, Steve},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/DagRep.1.7.53},
URN = {urn:nbn:de:0030-drops-33093},
doi = {10.4230/DagRep.1.7.53},
annote = {Keywords: learning theory, machine learning, sparsity, high-dimensional geometry, manifold learning, online learning}
}