Search Results

Documents authored by Hell, Pavol


Document
On the Kernel and Related Problems in Interval Digraphs

Authors: Mathew C. Francis, Pavol Hell, and Dalu Jacob

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Given a digraph G, a set X ⊆ V(G) is said to be an absorbing set (resp. dominating set) if every vertex in the graph is either in X or is an in-neighbour (resp. out-neighbour) of a vertex in X. A set S ⊆ V(G) is said to be an independent set if no two vertices in S are adjacent in G. A kernel (resp. solution) of G is an independent and absorbing (resp. dominating) set in G. The problem of deciding if there is a kernel (or solution) in an input digraph is known to be NP-complete. Similarly, the problems of computing a minimum cardinality kernel, absorbing set (or dominating set) and the problems of computing a maximum cardinality kernel, independent set are all known to be NP-hard for general digraphs. We explore the algorithmic complexity of these problems in the well known class of interval digraphs. A digraph G is an interval digraph if a pair of intervals (S_u,T_u) can be assigned to each vertex u of G such that (u,v) ∈ E(G) if and only if S_u ∩ T_v ≠ ∅. Many different subclasses of interval digraphs have been defined and studied in the literature by restricting the kinds of pairs of intervals that can be assigned to the vertices. We observe that several of these classes, like interval catch digraphs, interval nest digraphs, adjusted interval digraphs and chronological interval digraphs, are subclasses of the more general class of reflexive interval digraphs - which arise when we require that the two intervals assigned to a vertex have to intersect. We see as our main contribution the identification of the class of reflexive interval digraphs as an important class of digraphs. We show that all the problems mentioned above are efficiently solvable, in most of the cases even linear-time solvable, in the class of reflexive interval digraphs, but are APX-hard on even the very restricted class of interval digraphs called point-point digraphs, where the two intervals assigned to each vertex are required to be degenerate, i.e. they consist of a single point each. The results we obtain improve and generalize several existing algorithms and structural results for reflexive interval digraphs. We also obtain some new results for undirected graphs along the way: (a) We get an O(n(n+m)) time algorithm for computing a minimum cardinality (undirected) independent dominating set in cocomparability graphs, which slightly improves the existing O(n³) time algorithm for the same problem by Kratsch and Stewart; and (b) We show that the Red Blue Dominating Set problem, which is NP-complete even for planar bipartite graphs, is linear-time solvable on interval bigraphs, which is a class of bipartite (undirected) graphs closely related to interval digraphs.

Cite as

Mathew C. Francis, Pavol Hell, and Dalu Jacob. On the Kernel and Related Problems in Interval Digraphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{francis_et_al:LIPIcs.ISAAC.2021.17,
  author =	{Francis, Mathew C. and Hell, Pavol and Jacob, Dalu},
  title =	{{On the Kernel and Related Problems in Interval Digraphs}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.17},
  URN =		{urn:nbn:de:0030-drops-154505},
  doi =		{10.4230/LIPIcs.ISAAC.2021.17},
  annote =	{Keywords: Interval digraphs, kernel, absorbing set, dominating set, independent set, algorithms, approximation hardness}
}
Document
List Homomorphism Problems for Signed Graphs

Authors: Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell, and Nikola Jedličková

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph (G,σ), equipped with lists L(v) ⊆ V(H), v ∈ V(G), of allowed images, to a fixed target signed graph (H,π). The complexity of the similar homomorphism problem without lists (corresponding to all lists being L(v) = V(H)) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. Both versions (with lists or without lists) can be formulated as constraint satisfaction problems, and hence enjoy the algebraic dichotomy classification recently verified by Bulatov and Zhuk. By contrast, we seek a combinatorial classification for the list version, akin to the combinatorial classification for the version without lists completed by Brewster and Siggers. We illustrate the possible complications by classifying the complexity of the list homomorphism problem when H is a (reflexive or irreflexive) signed tree. It turns out that the problems are polynomial-time solvable for certain caterpillar-like trees, and are NP-complete otherwise. The tools we develop will be useful for classifications of other classes of signed graphs, and we mention some follow-up research of this kind; those classifications are surprisingly complex.

Cite as

Jan Bok, Richard Brewster, Tomás Feder, Pavol Hell, and Nikola Jedličková. List Homomorphism Problems for Signed Graphs. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 20:1-20:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bok_et_al:LIPIcs.MFCS.2020.20,
  author =	{Bok, Jan and Brewster, Richard and Feder, Tom\'{a}s and Hell, Pavol and Jedli\v{c}kov\'{a}, Nikola},
  title =	{{List Homomorphism Problems for Signed Graphs}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{20:1--20:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.20},
  URN =		{urn:nbn:de:0030-drops-126886},
  doi =		{10.4230/LIPIcs.MFCS.2020.20},
  annote =	{Keywords: complexity, dichotomy, graph homomorphism, signed graph}
}
Document
Interval-Like Graphs and Digraphs

Authors: Pavol Hell, Jing Huang, Ross M. McConnell, and Arash Rafiey

Published in: LIPIcs, Volume 117, 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)


Abstract
We unify several seemingly different graph and digraph classes under one umbrella. These classes are all, broadly speaking, different generalizations of interval graphs, and include, in addition to interval graphs, adjusted interval digraphs, threshold graphs, complements of threshold tolerance graphs (known as `co-TT' graphs), bipartite interval containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have been investigated in different contexts.) This common view is made possible by introducing reflexive relationships (loops) into the analysis. We also show that all the above classes are united by a common ordering characterization, the existence of a min ordering. We propose a common generalization of all these graph and digraph classes, namely signed-interval digraphs, and show that they are precisely the digraphs that are characterized by the existence of a min ordering. We also offer an alternative geometric characterization of these digraphs. For most of the above graph and digraph classes, we show that they are exactly those signed-interval digraphs that satisfy a suitable natural restriction on the digraph, like having a loop on every vertex, or having a symmetric edge-set, or being bipartite. For instance, co-TT graphs are precisely those signed-interval digraphs that have each edge symmetric. We also offer some discussion of future work on recognition algorithms and characterizations.

Cite as

Pavol Hell, Jing Huang, Ross M. McConnell, and Arash Rafiey. Interval-Like Graphs and Digraphs. In 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 117, pp. 68:1-68:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hell_et_al:LIPIcs.MFCS.2018.68,
  author =	{Hell, Pavol and Huang, Jing and McConnell, Ross M. and Rafiey, Arash},
  title =	{{Interval-Like Graphs and Digraphs}},
  booktitle =	{43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018)},
  pages =	{68:1--68:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-086-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{117},
  editor =	{Potapov, Igor and Spirakis, Paul and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2018.68},
  URN =		{urn:nbn:de:0030-drops-96503},
  doi =		{10.4230/LIPIcs.MFCS.2018.68},
  annote =	{Keywords: graph theory, interval graphs, interval bigraphs, min ordering, co-TT graph}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail