Search Results

Documents authored by Hjuler, Niklas


Document
Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Authors: Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
In this paper we study the dynamic versions of two basic graph problems: Minimum Dominating Set and its variant Minimum Connected Dominating Set. For those two problems, we present algorithms that maintain a solution under edge insertions and edge deletions in time O(Delta * polylog n) per update, where Delta is the maximum vertex degree in the graph. In both cases, we achieve an approximation ratio of O(log n), which is optimal up to a constant factor (under the assumption that P != NP). Although those two problems have been widely studied in the static and in the distributed settings, to the best of our knowledge we are the first to present efficient algorithms in the dynamic setting. As a further application of our approach, we also present an algorithm that maintains a Minimal Dominating Set in O(min(Delta, sqrt{m})) per update.

Cite as

Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic. Dominating Sets and Connected Dominating Sets in Dynamic Graphs. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hjuler_et_al:LIPIcs.STACS.2019.35,
  author =	{Hjuler, Niklas and Italiano, Giuseppe F. and Parotsidis, Nikos and Saulpic, David},
  title =	{{Dominating Sets and Connected Dominating Sets in Dynamic Graphs}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.35},
  URN =		{urn:nbn:de:0030-drops-102741},
  doi =		{10.4230/LIPIcs.STACS.2019.35},
  annote =	{Keywords: Dominating Set, Connected Dominating Set, Dynamic Graph Algorithms}
}
Document
One-Way Trail Orientations

Authors: Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
Given a graph, does there exist an orientation of the edges such that the resulting directed graph is strongly connected? Robbins' theorem [Robbins, Am. Math. Monthly, 1939] asserts that such an orientation exists if and only if the graph is 2-edge connected. A natural extension of this problem is the following: Suppose that the edges of the graph are partitioned into trails. Can the trails be oriented consistently such that the resulting directed graph is strongly connected? We show that 2-edge connectivity is again a sufficient condition and we provide a linear time algorithm for finding such an orientation. The generalised Robbins' theorem [Boesch, Am. Math. Monthly, 1980] for mixed multigraphs asserts that the undirected edges of a mixed multigraph can be oriented to make the resulting directed graph strongly connected exactly when the mixed graph is strongly connected and the underlying graph is bridgeless. We consider the natural extension where the undirected edges of a mixed multigraph are partitioned into trails. It turns out that in this case the condition of the generalised Robbin's Theorem is not sufficient. However, we show that as long as each cut either contains at least 2 undirected edges or directed edges in both directions, there exists an orientation of the trails such that the resulting directed graph is strongly connected. Moreover, if the condition is satisfied, we may start by orienting an arbitrary trail in an arbitrary direction. Using this result one obtains a very simple polynomial time algorithm for finding a strong trail orientation if it exists, both in the undirected and the mixed setting.

Cite as

Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg. One-Way Trail Orientations. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.ICALP.2018.6,
  author =	{Aamand, Anders and Hjuler, Niklas and Holm, Jacob and Rotenberg, Eva},
  title =	{{One-Way Trail Orientations}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{6:1--6:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.6},
  URN =		{urn:nbn:de:0030-drops-90109},
  doi =		{10.4230/LIPIcs.ICALP.2018.6},
  annote =	{Keywords: Graph algorithms, Robbins' theorem, Graph orientation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail