Search Results

Documents authored by Jafarrahmani, Farzad


Document
Phase Semantics for Linear Logic with Least and Greatest Fixed Points

Authors: Abhishek De, Farzad Jafarrahmani, and Alexis Saurin

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide range of applications and deep connections with several denotational semantics. In phase semantics, one is concerned about the provability of formulas rather than the contents of their proofs (or refutations). Linear logic equipped with the least and greatest fixpoint operators (μMALL) has been an active field of research for the past one and a half decades. Various proof systems are known viz. finitary and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL) to μMALL with explicit (co)induction (i.e. μMALL^{ind}). We introduce a Tait-style system for μMALL called μMALL_ω where proofs are wellfounded but potentially infinitely branching. We study its phase semantics and prove that it does not have the finite model property.

Cite as

Abhishek De, Farzad Jafarrahmani, and Alexis Saurin. Phase Semantics for Linear Logic with Least and Greatest Fixed Points. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 35:1-35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{de_et_al:LIPIcs.FSTTCS.2022.35,
  author =	{De, Abhishek and Jafarrahmani, Farzad and Saurin, Alexis},
  title =	{{Phase Semantics for Linear Logic with Least and Greatest Fixed Points}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{35:1--35:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.35},
  URN =		{urn:nbn:de:0030-drops-174272},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.35},
  annote =	{Keywords: Linear logic, fixed points, phase semantics, closure ordinals, cut elimination}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail