Search Results

Documents authored by Kamminga, Jonas


Document
Track A: Algorithms, Complexity and Games
BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting

Authors: Sevag Gharibian and Jonas Kamminga

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
What is the power of polynomial-time quantum computation with access to an NP oracle? In this work, we focus on two fundamental tasks from the study of Boolean satisfiability (SAT) problems: search-to-decision reductions, and approximate counting. We first show that, in strong contrast to the classical setting where a poly-time Turing machine requires Θ(n) queries to an NP oracle to compute a witness to a given SAT formula, quantumly Θ(log n) queries suffice. We then show this is tight in the black-box model - any quantum algorithm with "NP-like" query access to a formula requires Ω(log n) queries to extract a solution with constant probability. Moving to approximate counting of SAT solutions, by exploiting a quantum link between search-to-decision reductions and approximate counting, we show that existing classical approximate counting algorithms are likely optimal. First, we give a lower bound in the "NP-like" black-box query setting: Approximate counting requires Ω(log n) queries, even on a quantum computer. We then give a "white-box" lower bound (i.e. where the input formula is not hidden in the oracle) - if there exists a randomized poly-time classical or quantum algorithm for approximate counting making o(log n) NP queries, then BPP^NP[o(n)] contains a 𝖯^NP-complete problem if the algorithm is classical and FBQP^NP[o(n)] contains an FP^NP-complete problem if the algorithm is quantum.

Cite as

Sevag Gharibian and Jonas Kamminga. BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 70:1-70:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gharibian_et_al:LIPIcs.ICALP.2024.70,
  author =	{Gharibian, Sevag and Kamminga, Jonas},
  title =	{{BQP, Meet NP: Search-To-Decision Reductions and Approximate Counting}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{70:1--70:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.70},
  URN =		{urn:nbn:de:0030-drops-202134},
  doi =		{10.4230/LIPIcs.ICALP.2024.70},
  annote =	{Keywords: Approximate Counting, Search to Decision Reduction, BQP, NP, Oracle Complexity Class}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail