Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

We construct families of circles in the plane such that their tangency graphs have arbitrarily large girth and chromatic number. This provides a strong negative answer to Ringel’s circle problem (1959). The proof relies on a (multidimensional) version of Gallai’s theorem with polynomial constraints, which we derive from the Hales-Jewett theorem and which may be of independent interest.

James Davies, Chaya Keller, Linda Kleist, Shakhar Smorodinsky, and Bartosz Walczak. A Solution to Ringel’s Circle Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 33:1-33:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{davies_et_al:LIPIcs.SoCG.2022.33, author = {Davies, James and Keller, Chaya and Kleist, Linda and Smorodinsky, Shakhar and Walczak, Bartosz}, title = {{A Solution to Ringel’s Circle Problem}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {33:1--33:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.33}, URN = {urn:nbn:de:0030-drops-160413}, doi = {10.4230/LIPIcs.SoCG.2022.33}, annote = {Keywords: circle arrangement, chromatic number, Gallai’s theorem, polynomial method} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

A family ℱ of sets satisfies the (p,q)-property if among every p members of ℱ, some q can be pierced by a single point. The celebrated (p,q)-theorem of Alon and Kleitman asserts that for any p ≥ q ≥ d+1, any family ℱ of compact convex sets in ℝ^d that satisfies the (p,q)-property can be pierced by a finite number c(p,q,d) of points. A similar theorem with respect to piercing by (d-1)-dimensional flats, called (d-1)-transversals, was obtained by Alon and Kalai.
In this paper we prove the following result, which can be viewed as an (ℵ₀,k+2)-theorem with respect to k-transversals: Let ℱ be an infinite family of sets in ℝ^d such that each A ∈ ℱ contains a ball of radius r and is contained in a ball of radius R, and let 0 ≤ k < d. If among every ℵ₀ elements of ℱ, some k+2 can be pierced by a k-dimensional flat, then ℱ can be pierced by a finite number of k-dimensional flats.
This is the first (p,q)-theorem in which the assumption is weakened to an (∞,⋅) assumption. Our proofs combine geometric and topological tools.

Chaya Keller and Micha A. Perles. An (ℵ₀,k+2)-Theorem for k-Transversals. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 50:1-50:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{keller_et_al:LIPIcs.SoCG.2022.50, author = {Keller, Chaya and Perles, Micha A.}, title = {{An (\aleph₀,k+2)-Theorem for k-Transversals}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {50:1--50:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.50}, URN = {urn:nbn:de:0030-drops-160581}, doi = {10.4230/LIPIcs.SoCG.2022.50}, annote = {Keywords: convexity, (p,q)-theorem, k-transversal, infinite (p,q)-theorem} }

Document

Invited Talk

**Published in:** LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

In this paper we consider a new type of space partitioning which bridges the gap between continuous and discrete spaces in an error resilient way. It is motivated by the problem of rounding noisy measurements from some continuous space such as ℝ^d to a discrete subset of representative values, in which each tile in the partition is defined as the preimage of one of the output points. Standard rounding schemes seem to be inherently discontinuous across tile boundaries, but in this paper we show how to make it perfectly consistent (with error resilience ε) by guaranteeing that any pair of consecutive measurements X₁ and X₂ whose L₂ distance is bounded by ε will be rounded to the same nearby representative point in the discrete output space. We achieve this resilience by allowing a few bits of information about the first measurement X₁ to be unidirectionally communicated to and used by the rounding process of the second measurement X₂. Minimizing this revealed information can be particularly important in privacy-sensitive applications such as COVID-19 contact tracing, in which we want to find out all the cases in which two persons were at roughly the same place at roughly the same time, by comparing cryptographically hashed versions of their itineraries in an error resilient way.
The main problem we study in this paper is characterizing the achievable tradeoffs between the amount of information provided and the error resilience for various dimensions. We analyze the problem by considering the possible colored tilings of the space with k available colors, and use the color of the tile in which X₁ resides as the side information. We obtain our upper and lower bounds with a variety of techniques including isoperimetric inequalities, the Brunn-Minkowski theorem, sphere packing bounds, Sperner’s lemma, and Čech cohomology. In particular, we show that when X_i ∈ ℝ^d, communicating log₂(d+1) bits of information is both sufficient and necessary (in the worst case) to achieve positive resilience, and when d=3 we obtain a tight upper and lower asymptotic bound of (0.561 …)k^{1/3} on the achievable error resilience when we provide log₂(k) bits of information about X₁’s color.

Orr Dunkelman, Zeev Geyzel, Chaya Keller, Nathan Keller, Eyal Ronen, Adi Shamir, and Ran J. Tessler. Error Resilient Space Partitioning (Invited Talk). In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 4:1-4:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{dunkelman_et_al:LIPIcs.ICALP.2021.4, author = {Dunkelman, Orr and Geyzel, Zeev and Keller, Chaya and Keller, Nathan and Ronen, Eyal and Shamir, Adi and Tessler, Ran J.}, title = {{Error Resilient Space Partitioning}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {4:1--4:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.4}, URN = {urn:nbn:de:0030-drops-140731}, doi = {10.4230/LIPIcs.ICALP.2021.4}, annote = {Keywords: space partition, high-dimensional rounding, error resilience, sphere packing, Sperner’s lemma, Brunn-Minkowski theorem, \v{C}ech cohomology} }

Document

**Published in:** LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)

For a family ℱ of non-empty sets in ℝ^d, the Krasnoselskii number of ℱ is the smallest m such that for any S ∈ ℱ, if every m or fewer points of S are visible from a common point in S, then any finite subset of S is visible from a single point. More than 35 years ago, Peterson asked whether there exists a Krasnoselskii number for general sets in ℝ^d. The best known positive result is Krasnoselskii number 3 for closed sets in the plane, and the best known negative result is that if a Krasnoselskii number for general sets in ℝ^d exists, it cannot be smaller than (d+1)².
In this paper we answer Peterson’s question in the negative by showing that there is no Krasnoselskii number for the family of all sets in ℝ². The proof is non-constructive, and uses transfinite induction and the well-ordering theorem.
In addition, we consider Krasnoselskii numbers with respect to visibility through polygonal paths of length ≤ n, for which an analogue of Krasnoselskii’s theorem for compact simply connected sets was proved by Magazanik and Perles. We show, by an explicit construction, that for any n ≥ 2, there is no Krasnoselskii number for the family of compact sets in ℝ² with respect to visibility through paths of length ≤ n. (Here the counterexamples are finite unions of line segments.)

Chaya Keller and Micha A. Perles. No Krasnoselskii Number for General Sets. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 47:1-47:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{keller_et_al:LIPIcs.SoCG.2021.47, author = {Keller, Chaya and Perles, Micha A.}, title = {{No Krasnoselskii Number for General Sets}}, booktitle = {37th International Symposium on Computational Geometry (SoCG 2021)}, pages = {47:1--47:11}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-184-9}, ISSN = {1868-8969}, year = {2021}, volume = {189}, editor = {Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.47}, URN = {urn:nbn:de:0030-drops-138462}, doi = {10.4230/LIPIcs.SoCG.2021.47}, annote = {Keywords: visibility, Helly-type theorems, Krasnoselskii’s theorem, transfinite induction, well-ordering theorem} }

Document

**Published in:** LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

We study a natural generalization of the classical ε-net problem (Haussler - Welzl 1987), which we call the ε-t-net problem: Given a hypergraph on n vertices and parameters t and ε ≥ t/n, find a minimum-sized family S of t-element subsets of vertices such that each hyperedge of size at least ε n contains a set in S. When t=1, this corresponds to the ε-net problem.
We prove that any sufficiently large hypergraph with VC-dimension d admits an ε-t-net of size O((1+log t)d/ε log 1/ε). For some families of geometrically-defined hypergraphs (such as the dual hypergraph of regions with linear union complexity), we prove the existence of O(1/ε)-sized ε-t-nets.
We also present an explicit construction of ε-t-nets (including ε-nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of ε-nets (i.e., for t=1), it does not rely on advanced derandomization techniques. To this end we introduce a variant of the notion of VC-dimension which is of independent interest.

Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and Yelena Yuditsky. The ε-t-Net Problem. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 5:1-5:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{alon_et_al:LIPIcs.SoCG.2020.5, author = {Alon, Noga and Jartoux, Bruno and Keller, Chaya and Smorodinsky, Shakhar and Yuditsky, Yelena}, title = {{The \epsilon-t-Net Problem}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {5:1--5:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.5}, URN = {urn:nbn:de:0030-drops-121639}, doi = {10.4230/LIPIcs.SoCG.2020.5}, annote = {Keywords: epsilon-nets, geometric hypergraphs, VC-dimension, linear union complexity} }

Document

**Published in:** LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)

A family F of sets is said to satisfy the (p,q)-property if among any p sets of F some q have a non-empty intersection. The celebrated (p,q)-theorem of Alon and Kleitman asserts that any family of compact convex sets in R^d that satisfies the (p,q)-property for some q >= d+1, can be pierced by a fixed number (independent on the size of the family) f_d(p,q) of points. The minimum such piercing number is denoted by {HD}_d(p,q). Already in 1957, Hadwiger and Debrunner showed that whenever q > (d-1)/d p+1 the piercing number is {HD}_d(p,q)=p-q+1; no exact values of {HD}_d(p,q) were found ever since.
While for an arbitrary family of compact convex sets in R^d, d >= 2, a (p,2)-property does not imply a bounded piercing number, such bounds were proved for numerous specific families. The best-studied among them is axis-parallel boxes in R^d, and specifically, axis-parallel rectangles in the plane. Wegner (1965) and (independently) Dol'nikov (1972) used a (p,2)-theorem for axis-parallel rectangles to show that {HD}_{rect}(p,q)=p-q+1 holds for all q>sqrt{2p}. These are the only values of q for which {HD}_{rect}(p,q) is known exactly.
In this paper we present a general method which allows using a (p,2)-theorem as a bootstrapping to obtain a tight (p,q)-theorem, for families with Helly number 2, even without assuming that the sets in the family are convex or compact. To demonstrate the strength of this method, we show that {HD}_{d-box}(p,q)=p-q+1 holds for all q > c' log^{d-1} p, and in particular, {HD}_{rect}(p,q)=p-q+1 holds for all q >= 7 log_2 p (compared to q >= sqrt{2p}, obtained by Wegner and Dol'nikov more than 40 years ago).
In addition, for several classes of families, we present improved (p,2)-theorems, some of which can be used as a bootstrapping to obtain tight (p,q)-theorems. In particular, we show that any family F of compact convex sets in R^d with Helly number 2 admits a (p,2)-theorem with piercing number O(p^{2d-1}), and thus, satisfies {HD}_{F}(p,q)=p-q+1 for all q>cp^{1-1/(2d-1)}, for a universal constant c.

Chaya Keller and Shakhar Smorodinsky. From a (p,2)-Theorem to a Tight (p,q)-Theorem. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 51:1-51:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{keller_et_al:LIPIcs.SoCG.2018.51, author = {Keller, Chaya and Smorodinsky, Shakhar}, title = {{From a (p,2)-Theorem to a Tight (p,q)-Theorem}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {51:1--51:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.51}, URN = {urn:nbn:de:0030-drops-87640}, doi = {10.4230/LIPIcs.SoCG.2018.51}, annote = {Keywords: (p,q)-Theorem, convexity, transversals, (p,2)-theorem, axis-parallel rectangles} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail