Zarankiewicz’s Problem via ε-t-Nets

Authors Chaya Keller , Shakhar Smorodinsky



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.66.pdf
  • Filesize: 0.78 MB
  • 15 pages

Document Identifiers

Author Details

Chaya Keller
  • Department of Computer Science, Ariel University, Israel
Shakhar Smorodinsky
  • Department of Computer Science, Ben-Gurion University of the NEGEV, Beer Sheva, Israel

Cite AsGet BibTex

Chaya Keller and Shakhar Smorodinsky. Zarankiewicz’s Problem via ε-t-Nets. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.66

Abstract

The classical Zarankiewicz’s problem asks for the maximum number of edges in a bipartite graph on n vertices which does not contain the complete bipartite graph K_{t,t}. Kővári, Sós and Turán proved an upper bound of O(n^{2-1/t}). Fox et al. obtained an improved bound of O(n^{2-1/d}) for graphs of VC-dimension d (where d < t). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. Chan and Har-Peled further improved Basit et al.’s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of O(n log log n) for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz’s problem, via ε-t-nets - a recently introduced generalization of the classical notion of ε-nets. Using the new approach, we obtain a sharp bound of O(n) for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the O(n^{2-1/d}) bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp O(n {log n}/{log log n}) bound for the intersection graph of two families of axis-parallel rectangles.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Zarankiewicz’s Problem
  • ε-t-nets
  • pseudo-discs
  • VC-dimension

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. E. Ackerman, B. Keszegh, and D. Pálvölgyi. On tangencies among planar curves with an application to coloring L-shapes, proceedings of EuroComb 2021, Trends in Mathematics - Research Perspectives, CRM Barcelona 14, 2021. Google Scholar
  2. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In Advances in Discrete and Computational Geometry. Ed. by B. Chazelle, J. E. Goodman, and R. Pollack. AMS Press, pages 1-56, 1999. Google Scholar
  3. N. Alon, G. R. Brightwell, H. A. Kierstead, A. V. Kostochka, and P. Winkler. Dominating sets in k-majority tournaments. J. Comb. Theory, Ser. B, 96(3):374-387, 2006. Google Scholar
  4. N. Alon, D. Haussler, and E. Welzl. Partitioning and geometric embedding of range spaces of finite vapnik-chervonenkis dimension. In D. Soule, editor, Proceedings of SoCG'1987, pages 331-340. ACM, 1987. Google Scholar
  5. N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky. The ε-t-net problem. Discret. Comput. Geom., 68(2):618-644, 2022. URL: https://doi.org/10.1007/s00454-022-00376-x.
  6. S. Arya, G. Dias da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J. Comput., 47(1):1-51, 2018. Google Scholar
  7. A. Basit, A. Chernikov, S. Starchenko, T. Tao, and C.-M. Tran. Zarankiewicz’s problem for semilinear hypergraphs. Forum Math. Sigma, 9:Paper No. e59, 23, 2021. Google Scholar
  8. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the vapnik-chervonenkis dimension. J. ACM, 36(4):929-965, 1989. Google Scholar
  9. W. G. Brown. On graphs that do not contain a Thomsen graph. Canadian Math. Bulletin, 9(3):281-285, 1966. Google Scholar
  10. T. M. Chan. Improved deterministic algorithms for linear programming in low dimensions. ACM Trans. Algorithms, 14(3):30:1-30:10, 2018. Google Scholar
  11. T. M. Chan and S. Har-Peled. On the number of incidences when avoiding an induced biclique in geometric settings. In Proceedings of SODA 2023, pages 1398-1413. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch50.
  12. T. M. Chan and D. W. Zheng. Hopcroft’s problem, log-star shaving, 2d fractional cascading, and decision trees. In Proceedings of SODA 2022, pages 190-210. SIAM, 2022. Google Scholar
  13. B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. J. ACM, 37(2):200-212, 1990. Google Scholar
  14. T. Do. Representation complexities of semi-algebraic graphs. SIAM J. Discret. Math., 4(33):1864-1877, 2019. Google Scholar
  15. K. Dutta, A. Ghosh, B. Jartoux, and N. H. Mustafa. Shallow packings, semialgebraic set systems, Macbeath regions, and polynomial partitioning. Discret. Comput. Geom., 61(4):756-777, 2019. Google Scholar
  16. J. Fox and J. Pach. Separator theorems and Turán-type results for planar intersection graph. Advances in Mathematics, 219(3):1070-1080, 2008. Google Scholar
  17. J. Fox and J. Pach. Coloring k_k-free intersection graphs of geometric objects in the plane. Eur. J. Comb., 33(5):853-866, 2012. Google Scholar
  18. J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. A semi-algebraic version of Zarankiewicz’s problem. J. Euro. Math. Soc., 19(6):1785-1810, 2017. Google Scholar
  19. N. Frankl and A. Kupavskii. On the Erdős-Purdy problem and the Zarankiewitz problem for semialgebraic graphs, available at https://arxiv.org/abs/2112.10245, 2021.
  20. W. T. Gowers. Hypergraph regularity and the multidimensional szemerédi’s theorem. Annals of Mathematics, 166:897-946, 2007. Google Scholar
  21. D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete Comput. Geom., 2:127-151, 1987. Google Scholar
  22. O. Janzer and C. Pohoata. On the Zarankiewicz problem for graphs with bounded VC-dimension, available at arxiv: 2009.00130, 2020. Google Scholar
  23. B. Keszegh. Coloring intersection hypergraphs of pseudo-disks. In Bettina Speckmann and Csaba D. Tóth, editors, Proceedings of SoCG 2018, volume 99 of LIPIcs, pages 52:1-52:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.SoCG.2018.52.
  24. J. Komlós, J. Pach, and G. J. Woeginger. Almost tight bounds for epsilon-nets. Discret. Comput. Geom., 7:163-173, 1992. Google Scholar
  25. P. Kővári, V. Sós, and P. Turán. On a problem of Zarankiewicz. Colloq. Math., 3:50-57, 1954. Google Scholar
  26. N. H. Mustafa and J. Pach. On the Zarankiewicz problem for intersection hypergraphs. J. Comb. Theory, Ser. A, 141:1-7, 2016. Google Scholar
  27. N. H. Mustafa and S. Ray. ε-Mnets: Hitting geometric set systems with subsets. Discret. Comput. Geom., 57(3):625-640, 2017. Google Scholar
  28. N. H. Mustafa and K. Varadarajan. Epsilon-approximations & epsilon-nets, in: Handbook of Discrete and Computational Geometry, 3rd ed, pages 1241-1267. CRC Press, Boka Raton, 2018. Google Scholar
  29. B. Sudakov. Recent developments in extremal combinatorics: Ramsey and Turán type problems. In Proceedings of the International Congress of Mathematicians. Volume IV, pages 2579-2606, 2010. Google Scholar
  30. I. Tomon. Coloring lines and delaunay graphs with respect to boxes. Random Structures & Algorithms, 2023. Google Scholar
  31. I. Tomon and D. Zakharov. Turán-type results for intersection graphs of boxes. Comb. Probab. Comput., 30(6):982-987, 2021. Google Scholar