Search Results

Documents authored by Kern, Walter


Document
Contracting to a Longest Path in H-Free Graphs

Authors: Walter Kern and Daniël Paulusma

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
The Path Contraction problem has as input a graph G and an integer k and is to decide if G can be modified to the k-vertex path P_k by a sequence of edge contractions. A graph G is H-free for some graph H if G does not contain H as an induced subgraph. The Path Contraction problem restricted to H-free graphs is known to be NP-complete if H = claw or H = P₆ and polynomial-time solvable if H = P₅. We first settle the complexity of Path Contraction on H-free graphs for every H by developing a common technique. We then compare our classification with a (new) classification of the complexity of the problem Long Induced Path, which is to decide for a given integer k, if a given graph can be modified to P_k by a sequence of vertex deletions. Finally, we prove that the complexity classifications of Path Contraction and Cycle Contraction for H-free graphs do not coincide. The latter problem, which has not been fully classified for H-free graphs yet, is to decide if for some given integer k, a given graph contains the k-vertex cycle C_k as a contraction.

Cite as

Walter Kern and Daniël Paulusma. Contracting to a Longest Path in H-Free Graphs. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kern_et_al:LIPIcs.ISAAC.2020.22,
  author =	{Kern, Walter and Paulusma, Dani\"{e}l},
  title =	{{Contracting to a Longest Path in H-Free Graphs}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.22},
  URN =		{urn:nbn:de:0030-drops-133664},
  doi =		{10.4230/LIPIcs.ISAAC.2020.22},
  annote =	{Keywords: dichotomy, edge contraction, path, cycle, H-free graph}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail