Document

**Published in:** LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)

Let 𝒟 be a set of straight-line segments in the plane, potentially crossing, and let c be a positive integer. We denote by P the union of the endpoints of the straight-line segments of 𝒟 and of the intersection points between pairs of segments. We say that 𝒟 has a nearest-neighbor decomposition into c parts if we can partition P into c point sets P₁, … , P_c such that 𝒟 is the union of the nearest neighbor graphs on P₁, … , P_c. We show that it is NP-complete to decide whether 𝒟 can be drawn as the union of c ≥ 3 nearest-neighbor graphs, even when no two segments cross. We show that for c = 2, it is NP-complete in the general setting and polynomial-time solvable when no two segments cross. We show the existence of an O(log n)-approximation algorithm running in subexponential time for partitioning 𝒟 into a minimum number of nearest-neighbor graphs.
As a main tool in our analysis, we establish the notion of the conflict graph for a drawing 𝒟. The vertices of the conflict graph are the connected components of 𝒟, with the assumption that each connected component is the nearest neighbor graph of its vertices, and there is an edge between two components U and V if and only if the nearest neighbor graph of U ∪ V contains an edge between a vertex in U and a vertex in V. We show that string graphs are conflict graphs of certain planar drawings. For planar graphs and complete k-partite graphs, we give additional, more efficient constructions. We furthermore show that there are subdivisions of non-planar graphs that are not conflict graphs. Lastly, we show a separator lemma for conflict graphs.

Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang Mulzer, and Daniel Perz. Nearest-Neighbor Decompositions of Drawings. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{cleve_et_al:LIPIcs.SWAT.2022.21, author = {Cleve, Jonas and Grelier, Nicolas and Knorr, Kristin and L\"{o}ffler, Maarten and Mulzer, Wolfgang and Perz, Daniel}, title = {{Nearest-Neighbor Decompositions of Drawings}}, booktitle = {18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)}, pages = {21:1--21:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-236-5}, ISSN = {1868-8969}, year = {2022}, volume = {227}, editor = {Czumaj, Artur and Xin, Qin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.21}, URN = {urn:nbn:de:0030-drops-161812}, doi = {10.4230/LIPIcs.SWAT.2022.21}, annote = {Keywords: nearest-neighbors, decompositions, drawing} }

Document

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

Let S ⊆ ℝ² be a set of n planar sites, such that each s ∈ S has an associated radius r_s > 0. Let 𝒟(S) be the disk intersection graph for S. It has vertex set S and an edge between two distinct sites s, t ∈ S if and only if the disks with centers s, t and radii r_s, r_t intersect. Our goal is to design data structures that maintain the connectivity structure of 𝒟(S) as sites are inserted and/or deleted.
First, we consider unit disk graphs, i.e., r_s = 1, for all s ∈ S. We describe a data structure that has O(log² n) amortized update and O(log n/log log n) amortized query time. Second, we look at disk graphs with bounded radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ r_s ≤ Ψ, for a Ψ ≥ 1 known in advance. In the fully dynamic case, we achieve amortized update time O(Ψ λ₆(log n) log⁷ n) and query time O(log n/log log n), where λ_s(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols. In the incremental case, where only insertions are allowed, we get logarithmic dependency on Ψ, with O(α(n)) query time and O(logΨ λ₆(log n) log⁷ n) update time. For the decremental setting, where only deletions are allowed, we first develop an efficient disk revealing structure: given two sets R and B of disks, we can delete disks from R, and upon each deletion, we receive a list of all disks in B that no longer intersect the union of R. Using this, we get decremental data structures with amortized query time O(log n/log log n) that support m deletions in O((nlog⁵ n + m log⁷ n) λ₆(log n) + nlog Ψ log⁴n) overall time for bounded radius ratio Ψ and O((nlog⁶ n + m log⁸n) λ₆(log n)) for arbitrary radii.

Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Dynamic Connectivity in Disk Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 49:1-49:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.SoCG.2022.49, author = {Kaplan, Haim and Kauer, Alexander and Klost, Katharina and Knorr, Kristin and Mulzer, Wolfgang and Roditty, Liam and Seiferth, Paul}, title = {{Dynamic Connectivity in Disk Graphs}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {49:1--49:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.49}, URN = {urn:nbn:de:0030-drops-160572}, doi = {10.4230/LIPIcs.SoCG.2022.49}, annote = {Keywords: Disk Graphs, Connectivity, Lower Envelopes} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail