Search Results

Documents authored by Kobayashi, Hirotada


Document
Power of Quantum Computation with Few Clean Qubits

Authors: Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Shuhei Tamate, and Seiichiro Tani

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
This paper investigates the power of polynomial-time quantum computation in which only a very limited number of qubits are initially clean in the |0> state, and all the remaining qubits are initially in the totally mixed state. No initializations of qubits are allowed during the computation, nor are intermediate measurements. The main contribution of this paper is to develop unexpectedly strong error-reduction methods for such quantum computations that simultaneously reduce the number of necessary clean qubits. It is proved that any problem solvable by a polynomialtime quantum computation with one-sided bounded error that uses logarithmically many clean qubits is also solvable with exponentially small one-sided error using just two clean qubits, and with polynomially small one-sided error using just one clean qubit. It is further proved in the twosided-error case that any problem solvable by such a computation with a constant gap between completeness and soundness using logarithmically many clean qubits is also solvable with exponentially small two-sided error using just two clean qubits. If only one clean qubit is available, the problem is again still solvable with exponentially small error in one of the completeness and soundness and with polynomially small error in the other. An immediate consequence is that the Trace Estimation problem defined with fixed constant threshold parameters is complete for BQ_{[1]}P and BQ_{log}P, the classes of problems solvable by polynomial-time quantum computations with completeness 2/3 and soundness 1/3 using just one and logarithmically many clean qubits, respectively. The techniques used for proving the error-reduction results may be of independent interest in themselves, and one of the technical tools can also be used to show the hardness of weak classical simulations of one-clean-qubit computations (i.e., DQC1 computations).

Cite as

Keisuke Fujii, Hirotada Kobayashi, Tomoyuki Morimae, Harumichi Nishimura, Shuhei Tamate, and Seiichiro Tani. Power of Quantum Computation with Few Clean Qubits. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fujii_et_al:LIPIcs.ICALP.2016.13,
  author =	{Fujii, Keisuke and Kobayashi, Hirotada and Morimae, Tomoyuki and Nishimura, Harumichi and Tamate, Shuhei and Tani, Seiichiro},
  title =	{{Power of Quantum Computation with Few Clean Qubits}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{13:1--13:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.13},
  URN =		{urn:nbn:de:0030-drops-62960},
  doi =		{10.4230/LIPIcs.ICALP.2016.13},
  annote =	{Keywords: DQC1, quantum computing, complete problems, error reduction}
}
Document
Space-Efficient Error Reduction for Unitary Quantum Computations

Authors: Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Morimae, and Harumichi Nishimura

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
This paper presents a general space-efficient method for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness c and soundness s, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most 2^{-p}, the most space-efficient method known requires extra workspace of O(p*log(1/(c-s))) qubits. This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper shows an errorreduction method for unitary quantum computations (i.e., computations without intermediate measurements) that requires extra workspace of just O(log(p/(c-s))) qubits. This in particular gives the first method of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness gap, and strong amplification for matchgate computations.

Cite as

Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Morimae, and Harumichi Nishimura. Space-Efficient Error Reduction for Unitary Quantum Computations. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fefferman_et_al:LIPIcs.ICALP.2016.14,
  author =	{Fefferman, Bill and Kobayashi, Hirotada and Yen-Yu Lin, Cedric and Morimae, Tomoyuki and Nishimura, Harumichi},
  title =	{{Space-Efficient Error Reduction for Unitary Quantum Computations}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.14},
  URN =		{urn:nbn:de:0030-drops-62975},
  doi =		{10.4230/LIPIcs.ICALP.2016.14},
  annote =	{Keywords: space-bounded computation, quantum Merlin-Arthur proof systems, error reduction, quantum computing}
}
Document
Generalized Quantum Arthur-Merlin Games

Authors: Hirotada Kobayashi, Francois Le Gall, and Harumichi Nishimura

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
This paper investigates the role of interaction and coins in quantum Arthur-Merlin games (also called public-coin quantum interactive proof systems). While the existing model restricts the messages from the verifier to be classical even in the quantum setting, the present work introduces a generalized version of quantum Arthur-Merlin games where the messages from the verifier can be quantum as well: the verifier can send not only random bits, but also halves of EPR pairs. This generalization turns out to provide several novel characterizations of quantum interactive proof systems with a constant number of turns. First, it is proved that the complexity class corresponding to two-turn quantum Arthur-Merlin games where both of the two messages are quantum, denoted qq-QAM in this paper, does not change by adding a constant number of turns of classical interaction prior to the communications of qq-QAM proof systems. This can be viewed as a quantum analogue of the celebrated collapse theorem for AM due to Babai. To prove this collapse theorem, this paper presents a natural complete problem for qq-QAM: deciding whether the output of a given quantum circuit is close to a totally mixed state. This complete problem is on the very line of the previous studies investigating the hardness of checking properties related to quantum circuits, and thus, qq-QAM may provide a good measure in computational complexity theory. It is further proved that the class qq-QAM_1, the perfect-completeness variant of qq-QAM, gives new bounds for standard well-studied classes of two-turn quantum interactive proof systems. Finally, the collapse theorem above is extended to comprehensively classify the role of classical and quantum interactions in quantum Arthur-Merlin games: it is proved that, for any constant m >= 2, the class of problems having $m$-turn quantum Arthur-Merlin proof systems is either equal to PSPACE or equal to the class of problems having two-turn quantum Arthur-Merlin proof systems of a specific type, which provides a complete set of quantum analogues of Babai's collapse theorem.

Cite as

Hirotada Kobayashi, Francois Le Gall, and Harumichi Nishimura. Generalized Quantum Arthur-Merlin Games. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 488-511, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kobayashi_et_al:LIPIcs.CCC.2015.488,
  author =	{Kobayashi, Hirotada and Le Gall, Francois and Nishimura, Harumichi},
  title =	{{Generalized Quantum Arthur-Merlin Games}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{488--511},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.488},
  URN =		{urn:nbn:de:0030-drops-50697},
  doi =		{10.4230/LIPIcs.CCC.2015.488},
  annote =	{Keywords: interactive proof systems, Arthur-Merlin games, quantum computing, complete problems, entanglement}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail