Search Results

Documents authored by Kobbe, Kai


Artifact
Software
dispersive_agp_solver

Authors: Kai Kobbe and Dominik Krupke


Abstract

Cite as

Kai Kobbe, Dominik Krupke. dispersive_agp_solver (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-24341,
   title = {{dispersive\underlineagp\underlinesolver}}, 
   author = {Kobbe, Kai and Krupke, Dominik},
   note = {Software, German Research Foundation (DFG), project “CG:SHOP”, FE 407/21-1, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:f655f369c667ab3b9b7b7afff427303919d67cdc;origin=https://github.com/KaiKobbe/dispersive_agp_solver;visit=swh:1:snp:eb60401718e6b4aee843180c7288f8c3f6a39397;anchor=swh:1:rev:4a177bc942f444d2519f93d78eb23857f97eeb63}{\texttt{swh:1:dir:f655f369c667ab3b9b7b7afff427303919d67cdc}} (visited on 2025-08-20)},
   url = {https://github.com/KaiKobbe/dispersive_agp_solver},
   doi = {10.4230/artifacts.24341},
}
Document
Guarding Offices with Maximum Dispersion

Authors: Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We investigate the Dispersive Art Gallery Problem with vertex guards and rectangular visibility (r-visibility) for a class of orthogonal polygons that reflect the properties of real-world floor plans: these office-like polygons consist of rectangular rooms and corridors. In the dispersive variant of the Art Gallery Problem, the objective is not to minimize the number of guards but to maximize the minimum geodesic L₁-distance between any two guards, called the dispersion distance. Our main contributions are as follows. We prove that determining whether a vertex guard set can achieve a dispersion distance of 4 in office-like polygons is NP-complete, where vertices of the polygon are restricted to integer coordinates. Additionally, we present a simple worst-case optimal algorithm that guarantees a dispersion distance of 3 in polynomial time. Our complexity result extends to polyominoes, resolving an open question posed by Rieck and Scheffer [Christian Rieck and Christian Scheffer, 2024]. When vertex coordinates are allowed to be rational, we establish analogous results, proving that achieving a dispersion distance of 2+ε is NP-hard for any ε > 0, while the classic Art Gallery Problem remains solvable in polynomial time for this class of polygons. Furthermore, we give a straightforward polynomial-time algorithm that computes worst-case optimal solutions with a dispersion distance 2. On the other hand, for the more restricted class of hole-free independent office-like polygons, we propose a dynamic programming approach that computes optimal solutions. Moreover, we demonstrate that the problem is practically tractable for arbitrary orthogonal polygons. To this end, we compare solvers based on SAT, CP, and MIP formulations. Notably, SAT solvers efficiently compute optimal solutions for randomly generated instances with up to 1600 vertices in under 15s.

Cite as

Sándor P. Fekete, Kai Kobbe, Dominik Krupke, Joseph S. B. Mitchell, Christian Rieck, and Christian Scheffer. Guarding Offices with Maximum Dispersion. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.MFCS.2025.46,
  author =	{Fekete, S\'{a}ndor P. and Kobbe, Kai and Krupke, Dominik and Mitchell, Joseph S. B. and Rieck, Christian and Scheffer, Christian},
  title =	{{Guarding Offices with Maximum Dispersion}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{46:1--46:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.46},
  URN =		{urn:nbn:de:0030-drops-241530},
  doi =		{10.4230/LIPIcs.MFCS.2025.46},
  annote =	{Keywords: Dispersive Art Gallery Problem, vertex guards, office-like polygons, orthogonal polygons, polyominoes, NP-completeness, worst-case optimality, dynamic programming, SAT solver}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail