Search Results

Documents authored by Kostejn, Vit


Document
U-Prithvi: Integrating a Foundation Model and U-Net for Enhanced Flood Inundation Mapping

Authors: Vit Kostejn, Yamil Essus, Jenna Abrahamson, and Ranga Raju Vatsavai

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
In recent years, large pre-trained models, commonly referred to as foundation models, have become increasingly popular for various tasks leveraging transfer learning. This trend has expanded to remote sensing, where transformer-based foundation models such as Prithvi, msGFM, and SatSwinMAE have been utilized for a range of applications. While these transformer-based models, particularly the Prithvi model, exhibit strong generalization capabilities, they have limitations on capturing fine-grained details compared to convolutional neural network architectures like U-Net in segmentation tasks. In this paper, we propose a novel architecture, U-Prithvi, which combines the strengths of the Prithvi transformer with those of U-Net. We introduce a RandomHalfMaskLayer to ensure balanced learning from both models during training. Our approach is evaluated on the Sen1Floods11 dataset for flood inundation mapping, and experimental results demonstrate better performance of U-Prithvi over both individual models, achieving improved performance on out-of-sample data. While this principle is illustrated using the Prithvi model, it is easily adaptable to other foundation models.

Cite as

Vit Kostejn, Yamil Essus, Jenna Abrahamson, and Ranga Raju Vatsavai. U-Prithvi: Integrating a Foundation Model and U-Net for Enhanced Flood Inundation Mapping. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kostejn_et_al:LIPIcs.GIScience.2025.18,
  author =	{Kostejn, Vit and Essus, Yamil and Abrahamson, Jenna and Vatsavai, Ranga Raju},
  title =	{{U-Prithvi: Integrating a Foundation Model and U-Net for Enhanced Flood Inundation Mapping}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.18},
  URN =		{urn:nbn:de:0030-drops-238479},
  doi =		{10.4230/LIPIcs.GIScience.2025.18},
  annote =	{Keywords: GeoAI, flood mapping, foundation model, U-Net, Prithvi}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail