Search Results

Documents authored by Kozhaya, David


Document
On Real-Time Guarantees in Intel SGX and TDX

Authors: Peterson Yuhala, Christian Göttel, Jämes Ménétrey, Valerio Schiavoni, David Kozhaya, and Pascal Felber

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Trusted execution environments (TEE) represent a major technological breakthrough that provide strong confidentiality and integrity guarantees for code and data running on potentially vulnerable or untrustworthy computing systems, such as cloud, edge, embedded, mobile, or even blockchain systems. However, the performance overhead associated with TEEs still poses a limitation on the extent to which real-time (RT) sensitive applications can benefit from this technology, e.g., to run on untrusted third-party infrastructures. This work investigates various TEE-based architectures spanning from process-based to virtual-machine-based implementations, for securing RT applications. It offers in addition an in-depth evaluation of these architectures, providing insights into how various TEE deployments influence the temporal compute and communication guarantees of RT systems.

Cite as

Peterson Yuhala, Christian Göttel, Jämes Ménétrey, Valerio Schiavoni, David Kozhaya, and Pascal Felber. On Real-Time Guarantees in Intel SGX and TDX. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 8:1-8:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{yuhala_et_al:LIPIcs.ECRTS.2025.8,
  author =	{Yuhala, Peterson and G\"{o}ttel, Christian and M\'{e}n\'{e}trey, J\"{a}mes and Schiavoni, Valerio and Kozhaya, David and Felber, Pascal},
  title =	{{On Real-Time Guarantees in Intel SGX and TDX}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{8:1--8:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.8},
  URN =		{urn:nbn:de:0030-drops-235865},
  doi =		{10.4230/LIPIcs.ECRTS.2025.8},
  annote =	{Keywords: Trusted execution environments, Real-time systems, Intel SGX, Intel TDX, WebAssembly}
}
Document
You Only Live Multiple Times: A Blackbox Solution for Reusing Crash-Stop Algorithms In Realistic Crash-Recovery Settings

Authors: David Kozhaya, Ognjen Maric, and Yvonne-Anne Pignolet

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
Distributed agreement-based algorithms are often specified in a crash-stop asynchronous model augmented by Chandra and Toueg's unreliable failure detectors. In such models, correct nodes stay up forever, incorrect nodes eventually crash and remain down forever, and failure detectors behave correctly forever eventually, However, in reality, nodes as well as communication links both crash and recover without deterministic guarantees to remain in some state forever. In this paper, we capture this realistic temporary and probabilitic behaviour in a simple new system model. Moreover, we identify a large algorithm class for which we devise a property-preserving transformation. Using this transformation, many algorithms written for the asynchronous crash-stop model run correctly and unchanged in real systems.

Cite as

David Kozhaya, Ognjen Maric, and Yvonne-Anne Pignolet. You Only Live Multiple Times: A Blackbox Solution for Reusing Crash-Stop Algorithms In Realistic Crash-Recovery Settings. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kozhaya_et_al:LIPIcs.OPODIS.2018.19,
  author =	{Kozhaya, David and Maric, Ognjen and Pignolet, Yvonne-Anne},
  title =	{{You Only Live Multiple Times: A Blackbox Solution for Reusing Crash-Stop Algorithms In Realistic Crash-Recovery Settings}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.19},
  URN =		{urn:nbn:de:0030-drops-100792},
  doi =		{10.4230/LIPIcs.OPODIS.2018.19},
  annote =	{Keywords: Crash recovery, consensus, asynchrony}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail